Loading…
Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel
Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeut...
Saved in:
Published in: | Journal of biochemistry (Tokyo) 2014-06, Vol.155 (6), p.361-373 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43 |
container_end_page | 373 |
container_issue | 6 |
container_start_page | 361 |
container_title | Journal of biochemistry (Tokyo) |
container_volume | 155 |
creator | Kachooei, Ehsan Moosavi-Movahedi, Ali Akbar Khodagholi, Fariba Mozaffarian, Faroogh Sadeghi, Payam Hadi-Alijanvand, Hamid Ghasemi, Atiyeh Saboury, Ali Akbar Farhadi, Mohammad Sheibani, Nader |
description | Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeutic strategy. Peptides, surfactants and aromatic small molecules have been used as fibrillation inhibitors. Here we studied the effects of paclitaxel, a polyphenol with a high tendency for interaction with proteins, on fibrillation of insulin as a model protein. The effects of paclitaxel on insulin fibrillation were determined by Thioflavin T fluorescence, Congo red absorbance, circular dichroism and atomic force microscopy. These studies indicated that paclitaxel considerably hindered nucleation, and therefore, fibrillation of insulin in a dose-dependant manner. The isothermal titration calorimetry studies showed that the interaction between paclitaxel and insulin was spontaneous. In addition, the van der Waal's interactions and hydrogen bonds were prominent forces contributing to this interaction. Computational results using molecular dynamic simulations and docking studies revealed that paclitaxel diminished the polarity of insulin dimer and electrostatic interactions by increasing the hydrophobicity of its dimer state. Furthermore, paclitaxel reduced disrupting effects of insulin fibrils on PC12 cell's neurite outgrowth and complexity, and enhanced their survival. |
doi_str_mv | 10.1093/jb/mvu012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530958119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1530958119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43</originalsourceid><addsrcrecordid>eNo9kMtKA0EQRRtRTIwu_AGZpS7GVL8m6aWEGAMBNwrumn5ih3nE6R7J_L0TE11VFfdwKQ5CtxgeMQg63epp9d0BJmdojGe8yEnB8TkaAxCcC8I-Rugqxu3hJJReohFhnPIC8Bit1vVn0CGFps5i6myfDUuoY1eGOvNBt6Es1W-qapuZPjWp2QcTUp_pPtspU4ak9q68RhdeldHdnOYEvT8v3xYv-eZ1tV48bXLDgKRcYOFmXnMwHKAAqudAYOYd5dQa7gpKLLBCMeut8EDn2Hgt9EBxNmCK0Qm6P_bu2uarczHJKkTjhidr13RRYk5B8DnGYkAfjqhpmxhb5-WuDZVqe4lBHrzJrZZHbwN7d6rtdOXsP_kniv4AQVFpug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530958119</pqid></control><display><type>article</type><title>Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel</title><source>Oxford Journals Online</source><creator>Kachooei, Ehsan ; Moosavi-Movahedi, Ali Akbar ; Khodagholi, Fariba ; Mozaffarian, Faroogh ; Sadeghi, Payam ; Hadi-Alijanvand, Hamid ; Ghasemi, Atiyeh ; Saboury, Ali Akbar ; Farhadi, Mohammad ; Sheibani, Nader</creator><creatorcontrib>Kachooei, Ehsan ; Moosavi-Movahedi, Ali Akbar ; Khodagholi, Fariba ; Mozaffarian, Faroogh ; Sadeghi, Payam ; Hadi-Alijanvand, Hamid ; Ghasemi, Atiyeh ; Saboury, Ali Akbar ; Farhadi, Mohammad ; Sheibani, Nader</creatorcontrib><description>Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeutic strategy. Peptides, surfactants and aromatic small molecules have been used as fibrillation inhibitors. Here we studied the effects of paclitaxel, a polyphenol with a high tendency for interaction with proteins, on fibrillation of insulin as a model protein. The effects of paclitaxel on insulin fibrillation were determined by Thioflavin T fluorescence, Congo red absorbance, circular dichroism and atomic force microscopy. These studies indicated that paclitaxel considerably hindered nucleation, and therefore, fibrillation of insulin in a dose-dependant manner. The isothermal titration calorimetry studies showed that the interaction between paclitaxel and insulin was spontaneous. In addition, the van der Waal's interactions and hydrogen bonds were prominent forces contributing to this interaction. Computational results using molecular dynamic simulations and docking studies revealed that paclitaxel diminished the polarity of insulin dimer and electrostatic interactions by increasing the hydrophobicity of its dimer state. Furthermore, paclitaxel reduced disrupting effects of insulin fibrils on PC12 cell's neurite outgrowth and complexity, and enhanced their survival.</description><identifier>ISSN: 0021-924X</identifier><identifier>EISSN: 1756-2651</identifier><identifier>DOI: 10.1093/jb/mvu012</identifier><identifier>PMID: 24535601</identifier><language>eng</language><publisher>England</publisher><subject>Amyloid - drug effects ; Amyloid - metabolism ; Animals ; Cell Differentiation - drug effects ; Circular Dichroism ; Dose-Response Relationship, Drug ; Fluorescence ; Hydrogen Bonding ; Insulin - chemistry ; Insulin - metabolism ; Microscopy, Atomic Force ; Molecular Dynamics Simulation ; Paclitaxel - pharmacology ; PC12 Cells ; Protein Multimerization ; Protein Structure, Secondary ; Rats ; Thiazoles</subject><ispartof>Journal of biochemistry (Tokyo), 2014-06, Vol.155 (6), p.361-373</ispartof><rights>The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43</citedby><cites>FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24535601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kachooei, Ehsan</creatorcontrib><creatorcontrib>Moosavi-Movahedi, Ali Akbar</creatorcontrib><creatorcontrib>Khodagholi, Fariba</creatorcontrib><creatorcontrib>Mozaffarian, Faroogh</creatorcontrib><creatorcontrib>Sadeghi, Payam</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Ghasemi, Atiyeh</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Farhadi, Mohammad</creatorcontrib><creatorcontrib>Sheibani, Nader</creatorcontrib><title>Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel</title><title>Journal of biochemistry (Tokyo)</title><addtitle>J Biochem</addtitle><description>Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeutic strategy. Peptides, surfactants and aromatic small molecules have been used as fibrillation inhibitors. Here we studied the effects of paclitaxel, a polyphenol with a high tendency for interaction with proteins, on fibrillation of insulin as a model protein. The effects of paclitaxel on insulin fibrillation were determined by Thioflavin T fluorescence, Congo red absorbance, circular dichroism and atomic force microscopy. These studies indicated that paclitaxel considerably hindered nucleation, and therefore, fibrillation of insulin in a dose-dependant manner. The isothermal titration calorimetry studies showed that the interaction between paclitaxel and insulin was spontaneous. In addition, the van der Waal's interactions and hydrogen bonds were prominent forces contributing to this interaction. Computational results using molecular dynamic simulations and docking studies revealed that paclitaxel diminished the polarity of insulin dimer and electrostatic interactions by increasing the hydrophobicity of its dimer state. Furthermore, paclitaxel reduced disrupting effects of insulin fibrils on PC12 cell's neurite outgrowth and complexity, and enhanced their survival.</description><subject>Amyloid - drug effects</subject><subject>Amyloid - metabolism</subject><subject>Animals</subject><subject>Cell Differentiation - drug effects</subject><subject>Circular Dichroism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fluorescence</subject><subject>Hydrogen Bonding</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular Dynamics Simulation</subject><subject>Paclitaxel - pharmacology</subject><subject>PC12 Cells</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Secondary</subject><subject>Rats</subject><subject>Thiazoles</subject><issn>0021-924X</issn><issn>1756-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKA0EQRRtRTIwu_AGZpS7GVL8m6aWEGAMBNwrumn5ih3nE6R7J_L0TE11VFfdwKQ5CtxgeMQg63epp9d0BJmdojGe8yEnB8TkaAxCcC8I-Rugqxu3hJJReohFhnPIC8Bit1vVn0CGFps5i6myfDUuoY1eGOvNBt6Es1W-qapuZPjWp2QcTUp_pPtspU4ak9q68RhdeldHdnOYEvT8v3xYv-eZ1tV48bXLDgKRcYOFmXnMwHKAAqudAYOYd5dQa7gpKLLBCMeut8EDn2Hgt9EBxNmCK0Qm6P_bu2uarczHJKkTjhidr13RRYk5B8DnGYkAfjqhpmxhb5-WuDZVqe4lBHrzJrZZHbwN7d6rtdOXsP_kniv4AQVFpug</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kachooei, Ehsan</creator><creator>Moosavi-Movahedi, Ali Akbar</creator><creator>Khodagholi, Fariba</creator><creator>Mozaffarian, Faroogh</creator><creator>Sadeghi, Payam</creator><creator>Hadi-Alijanvand, Hamid</creator><creator>Ghasemi, Atiyeh</creator><creator>Saboury, Ali Akbar</creator><creator>Farhadi, Mohammad</creator><creator>Sheibani, Nader</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel</title><author>Kachooei, Ehsan ; Moosavi-Movahedi, Ali Akbar ; Khodagholi, Fariba ; Mozaffarian, Faroogh ; Sadeghi, Payam ; Hadi-Alijanvand, Hamid ; Ghasemi, Atiyeh ; Saboury, Ali Akbar ; Farhadi, Mohammad ; Sheibani, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amyloid - drug effects</topic><topic>Amyloid - metabolism</topic><topic>Animals</topic><topic>Cell Differentiation - drug effects</topic><topic>Circular Dichroism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fluorescence</topic><topic>Hydrogen Bonding</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular Dynamics Simulation</topic><topic>Paclitaxel - pharmacology</topic><topic>PC12 Cells</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Secondary</topic><topic>Rats</topic><topic>Thiazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kachooei, Ehsan</creatorcontrib><creatorcontrib>Moosavi-Movahedi, Ali Akbar</creatorcontrib><creatorcontrib>Khodagholi, Fariba</creatorcontrib><creatorcontrib>Mozaffarian, Faroogh</creatorcontrib><creatorcontrib>Sadeghi, Payam</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Ghasemi, Atiyeh</creatorcontrib><creatorcontrib>Saboury, Ali Akbar</creatorcontrib><creatorcontrib>Farhadi, Mohammad</creatorcontrib><creatorcontrib>Sheibani, Nader</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biochemistry (Tokyo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kachooei, Ehsan</au><au>Moosavi-Movahedi, Ali Akbar</au><au>Khodagholi, Fariba</au><au>Mozaffarian, Faroogh</au><au>Sadeghi, Payam</au><au>Hadi-Alijanvand, Hamid</au><au>Ghasemi, Atiyeh</au><au>Saboury, Ali Akbar</au><au>Farhadi, Mohammad</au><au>Sheibani, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel</atitle><jtitle>Journal of biochemistry (Tokyo)</jtitle><addtitle>J Biochem</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>155</volume><issue>6</issue><spage>361</spage><epage>373</epage><pages>361-373</pages><issn>0021-924X</issn><eissn>1756-2651</eissn><abstract>Alzheimer, a neurodegenerative disease, and a large variety of pathologic conditions are associated with a form of protein aggregation known as amyloid fibrils. Since fibrils and prefibrillar intermediates are cytotoxic, numerous attempts have been made to inhibit fibrillation process as a therapeutic strategy. Peptides, surfactants and aromatic small molecules have been used as fibrillation inhibitors. Here we studied the effects of paclitaxel, a polyphenol with a high tendency for interaction with proteins, on fibrillation of insulin as a model protein. The effects of paclitaxel on insulin fibrillation were determined by Thioflavin T fluorescence, Congo red absorbance, circular dichroism and atomic force microscopy. These studies indicated that paclitaxel considerably hindered nucleation, and therefore, fibrillation of insulin in a dose-dependant manner. The isothermal titration calorimetry studies showed that the interaction between paclitaxel and insulin was spontaneous. In addition, the van der Waal's interactions and hydrogen bonds were prominent forces contributing to this interaction. Computational results using molecular dynamic simulations and docking studies revealed that paclitaxel diminished the polarity of insulin dimer and electrostatic interactions by increasing the hydrophobicity of its dimer state. Furthermore, paclitaxel reduced disrupting effects of insulin fibrils on PC12 cell's neurite outgrowth and complexity, and enhanced their survival.</abstract><cop>England</cop><pmid>24535601</pmid><doi>10.1093/jb/mvu012</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-924X |
ispartof | Journal of biochemistry (Tokyo), 2014-06, Vol.155 (6), p.361-373 |
issn | 0021-924X 1756-2651 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530958119 |
source | Oxford Journals Online |
subjects | Amyloid - drug effects Amyloid - metabolism Animals Cell Differentiation - drug effects Circular Dichroism Dose-Response Relationship, Drug Fluorescence Hydrogen Bonding Insulin - chemistry Insulin - metabolism Microscopy, Atomic Force Molecular Dynamics Simulation Paclitaxel - pharmacology PC12 Cells Protein Multimerization Protein Structure, Secondary Rats Thiazoles |
title | Inhibition study on insulin fibrillation and cytotoxicity by paclitaxel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20study%20on%20insulin%20fibrillation%20and%20cytotoxicity%20by%20paclitaxel&rft.jtitle=Journal%20of%20biochemistry%20(Tokyo)&rft.au=Kachooei,%20Ehsan&rft.date=2014-06-01&rft.volume=155&rft.issue=6&rft.spage=361&rft.epage=373&rft.pages=361-373&rft.issn=0021-924X&rft.eissn=1756-2651&rft_id=info:doi/10.1093/jb/mvu012&rft_dat=%3Cproquest_cross%3E1530958119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-919e7fb50c500603b80207fe353dc5e632d046a4dfd9f0381cfb9bb805407fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1530958119&rft_id=info:pmid/24535601&rfr_iscdi=true |