Loading…
Acyclic vertex coloring of graphs of maximum degree six
In this paper, we prove that every graph with maximum degree six is acyclically 10-colorable, thus improving the main result of Hervé Hocquard (2011).
Saved in:
Published in: | Discrete mathematics 2014-06, Vol.325, p.17-22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3 |
container_end_page | 22 |
container_issue | |
container_start_page | 17 |
container_title | Discrete mathematics |
container_volume | 325 |
creator | Zhao, Yancai Miao, Lianying Pang, Shiyou Song, Wenyao |
description | In this paper, we prove that every graph with maximum degree six is acyclically 10-colorable, thus improving the main result of Hervé Hocquard (2011). |
doi_str_mv | 10.1016/j.disc.2014.01.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530968527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1400034X</els_id><sourcerecordid>1530968527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3</originalsourceid><addsrcrecordid>eNp9kD1rwzAQhkVpoWnaP9DJYxe7J8mWLOgSQr8g0KWFbEKWzqmCHbuSE5J_X5t07nR38LwH70PIPYWMAhWP28z5aDMGNM-AZsDYBZnRUrJUlHR9SWYAlKVcFOtrchPjFsZb8HJG5MKebONtcsAw4DGxXdMFv9skXZ1sgum_47S15ujbfZs43ATEJPrjLbmqTRPx7m_OydfL8-fyLV19vL4vF6vUcimHlFe1rIBJVDWX3HBJbV5yZ1BJhYVTIpdOVbxSuRiJqqaydBIwB2koWIt8Th7Of_vQ_ewxDrodi2LTmB12-6hpwUGJsmByRNkZtaGLMWCt--BbE06agp4s6a2eLOnJkgaqR0tj6OkcwrHEwWPQ0XrcWXQ-oB206_x_8V8922_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530968527</pqid></control><display><type>article</type><title>Acyclic vertex coloring of graphs of maximum degree six</title><source>ScienceDirect Journals</source><creator>Zhao, Yancai ; Miao, Lianying ; Pang, Shiyou ; Song, Wenyao</creator><creatorcontrib>Zhao, Yancai ; Miao, Lianying ; Pang, Shiyou ; Song, Wenyao</creatorcontrib><description>In this paper, we prove that every graph with maximum degree six is acyclically 10-colorable, thus improving the main result of Hervé Hocquard (2011).</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2014.01.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acyclic coloring ; Bounded degree graphs ; Coloring ; Graph coloring ; Graphs ; Mathematical analysis</subject><ispartof>Discrete mathematics, 2014-06, Vol.325, p.17-22</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3</citedby><cites>FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yancai</creatorcontrib><creatorcontrib>Miao, Lianying</creatorcontrib><creatorcontrib>Pang, Shiyou</creatorcontrib><creatorcontrib>Song, Wenyao</creatorcontrib><title>Acyclic vertex coloring of graphs of maximum degree six</title><title>Discrete mathematics</title><description>In this paper, we prove that every graph with maximum degree six is acyclically 10-colorable, thus improving the main result of Hervé Hocquard (2011).</description><subject>Acyclic coloring</subject><subject>Bounded degree graphs</subject><subject>Coloring</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rwzAQhkVpoWnaP9DJYxe7J8mWLOgSQr8g0KWFbEKWzqmCHbuSE5J_X5t07nR38LwH70PIPYWMAhWP28z5aDMGNM-AZsDYBZnRUrJUlHR9SWYAlKVcFOtrchPjFsZb8HJG5MKebONtcsAw4DGxXdMFv9skXZ1sgum_47S15ujbfZs43ATEJPrjLbmqTRPx7m_OydfL8-fyLV19vL4vF6vUcimHlFe1rIBJVDWX3HBJbV5yZ1BJhYVTIpdOVbxSuRiJqqaydBIwB2koWIt8Th7Of_vQ_ewxDrodi2LTmB12-6hpwUGJsmByRNkZtaGLMWCt--BbE06agp4s6a2eLOnJkgaqR0tj6OkcwrHEwWPQ0XrcWXQ-oB206_x_8V8922_w</recordid><startdate>20140628</startdate><enddate>20140628</enddate><creator>Zhao, Yancai</creator><creator>Miao, Lianying</creator><creator>Pang, Shiyou</creator><creator>Song, Wenyao</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140628</creationdate><title>Acyclic vertex coloring of graphs of maximum degree six</title><author>Zhao, Yancai ; Miao, Lianying ; Pang, Shiyou ; Song, Wenyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acyclic coloring</topic><topic>Bounded degree graphs</topic><topic>Coloring</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yancai</creatorcontrib><creatorcontrib>Miao, Lianying</creatorcontrib><creatorcontrib>Pang, Shiyou</creatorcontrib><creatorcontrib>Song, Wenyao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yancai</au><au>Miao, Lianying</au><au>Pang, Shiyou</au><au>Song, Wenyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acyclic vertex coloring of graphs of maximum degree six</atitle><jtitle>Discrete mathematics</jtitle><date>2014-06-28</date><risdate>2014</risdate><volume>325</volume><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>In this paper, we prove that every graph with maximum degree six is acyclically 10-colorable, thus improving the main result of Hervé Hocquard (2011).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2014.01.022</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2014-06, Vol.325, p.17-22 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1530968527 |
source | ScienceDirect Journals |
subjects | Acyclic coloring Bounded degree graphs Coloring Graph coloring Graphs Mathematical analysis |
title | Acyclic vertex coloring of graphs of maximum degree six |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acyclic%20vertex%20coloring%20of%20graphs%20of%20maximum%20degree%20six&rft.jtitle=Discrete%20mathematics&rft.au=Zhao,%20Yancai&rft.date=2014-06-28&rft.volume=325&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2014.01.022&rft_dat=%3Cproquest_cross%3E1530968527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-3bf7b027e9f373a371c483dae979e5d9647d9b3b9469f3bf178d70e407a10cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1530968527&rft_id=info:pmid/&rfr_iscdi=true |