Loading…

Segmentation of liver vessels for surgical purposes

In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the text...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition and image analysis 2014, Vol.24 (1), p.185-187
Main Authors: Zimmermann, P., Pirner, I., Zelezny, M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 187
container_issue 1
container_start_page 185
container_title Pattern recognition and image analysis
container_volume 24
creator Zimmermann, P.
Pirner, I.
Zelezny, M.
description In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.
doi_str_mv 10.1134/S1054661814010210
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530972453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3257260601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_Rmd3sJnuU4j8oeKiew3Y7KSlpNu40Bb-9W1pEFE-z8H7z5u1LkkuEW0SZ380QVK41lpgDgkA4SkaolMq0QHEc31HOdvppcsa8AoASjRglckbLNXUbu2l8l_o6bZsthXRLzNRyWvuQ8hCWjbNt2g-h90x8npzUtmW6OMxx8v748DZ5zqavTy-T-2nmRK4hk07ZeLwwOJ8LQcY4JYsFkIPaxIDKoiLlsC5yQVIuSAGVSi-ICMq5yUmOk5u9bx_8x0C8qdYNO2pb25EfuEIlwRQiVzKiV7_QlR9CF9NFCkEWWmsTKdxTLnjmQHXVh2Ztw2eFUO1qrP7UGHeuD86WYwl1sJ1r-HtRlApk_GXkxJ7jKHVLCj8S_Gv-BQytfqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510376669</pqid></control><display><type>article</type><title>Segmentation of liver vessels for surgical purposes</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</creator><creatorcontrib>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</creatorcontrib><description>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661814010210</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied Problems ; Applied sciences ; Artificial intelligence ; Boundaries ; Classification ; Computer Science ; Computer science; control theory; systems ; Cybernetics ; Data processing. List processing. Character string processing ; Density ; Exact sciences and technology ; Image Processing and Computer Vision ; Liver ; Mathematical models ; Medical imaging ; Memory organisation. Data processing ; Morphology ; Neighborhoods ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Skewness ; Software ; Studies ; Surface layer ; Surgery ; Texture</subject><ispartof>Pattern recognition and image analysis, 2014, Vol.24 (1), p.185-187</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1510376669?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11669,27903,27904,36039,36040,44342</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28503212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, P.</creatorcontrib><creatorcontrib>Pirner, I.</creatorcontrib><creatorcontrib>Zelezny, M.</creatorcontrib><title>Segmentation of liver vessels for surgical purposes</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</description><subject>Applied Problems</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Cybernetics</subject><subject>Data processing. List processing. Character string processing</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Liver</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Memory organisation. Data processing</subject><subject>Morphology</subject><subject>Neighborhoods</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Skewness</subject><subject>Software</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Surgery</subject><subject>Texture</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_Rmd3sJnuU4j8oeKiew3Y7KSlpNu40Bb-9W1pEFE-z8H7z5u1LkkuEW0SZ380QVK41lpgDgkA4SkaolMq0QHEc31HOdvppcsa8AoASjRglckbLNXUbu2l8l_o6bZsthXRLzNRyWvuQ8hCWjbNt2g-h90x8npzUtmW6OMxx8v748DZ5zqavTy-T-2nmRK4hk07ZeLwwOJ8LQcY4JYsFkIPaxIDKoiLlsC5yQVIuSAGVSi-ICMq5yUmOk5u9bx_8x0C8qdYNO2pb25EfuEIlwRQiVzKiV7_QlR9CF9NFCkEWWmsTKdxTLnjmQHXVh2Ztw2eFUO1qrP7UGHeuD86WYwl1sJ1r-HtRlApk_GXkxJ7jKHVLCj8S_Gv-BQytfqY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Zimmermann, P.</creator><creator>Pirner, I.</creator><creator>Zelezny, M.</creator><general>Springer US</general><general>Pleiades</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2014</creationdate><title>Segmentation of liver vessels for surgical purposes</title><author>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied Problems</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Cybernetics</topic><topic>Data processing. List processing. Character string processing</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Liver</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Memory organisation. Data processing</topic><topic>Morphology</topic><topic>Neighborhoods</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Skewness</topic><topic>Software</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Surgery</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, P.</creatorcontrib><creatorcontrib>Pirner, I.</creatorcontrib><creatorcontrib>Zelezny, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, P.</au><au>Pirner, I.</au><au>Zelezny, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of liver vessels for surgical purposes</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2014</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>185</spage><epage>187</epage><pages>185-187</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1054661814010210</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2014, Vol.24 (1), p.185-187
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_miscellaneous_1530972453
source ABI/INFORM global; Springer Nature
subjects Applied Problems
Applied sciences
Artificial intelligence
Boundaries
Classification
Computer Science
Computer science
control theory
systems
Cybernetics
Data processing. List processing. Character string processing
Density
Exact sciences and technology
Image Processing and Computer Vision
Liver
Mathematical models
Medical imaging
Memory organisation. Data processing
Morphology
Neighborhoods
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
Segmentation
Skewness
Software
Studies
Surface layer
Surgery
Texture
title Segmentation of liver vessels for surgical purposes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20liver%20vessels%20for%20surgical%20purposes&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Zimmermann,%20P.&rft.date=2014&rft.volume=24&rft.issue=1&rft.spage=185&rft.epage=187&rft.pages=185-187&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661814010210&rft_dat=%3Cproquest_cross%3E3257260601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1510376669&rft_id=info:pmid/&rfr_iscdi=true