Loading…
Segmentation of liver vessels for surgical purposes
In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the text...
Saved in:
Published in: | Pattern recognition and image analysis 2014, Vol.24 (1), p.185-187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 187 |
container_issue | 1 |
container_start_page | 185 |
container_title | Pattern recognition and image analysis |
container_volume | 24 |
creator | Zimmermann, P. Pirner, I. Zelezny, M. |
description | In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then. |
doi_str_mv | 10.1134/S1054661814010210 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530972453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3257260601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_Rmd3sJnuU4j8oeKiew3Y7KSlpNu40Bb-9W1pEFE-z8H7z5u1LkkuEW0SZ380QVK41lpgDgkA4SkaolMq0QHEc31HOdvppcsa8AoASjRglckbLNXUbu2l8l_o6bZsthXRLzNRyWvuQ8hCWjbNt2g-h90x8npzUtmW6OMxx8v748DZ5zqavTy-T-2nmRK4hk07ZeLwwOJ8LQcY4JYsFkIPaxIDKoiLlsC5yQVIuSAGVSi-ICMq5yUmOk5u9bx_8x0C8qdYNO2pb25EfuEIlwRQiVzKiV7_QlR9CF9NFCkEWWmsTKdxTLnjmQHXVh2Ztw2eFUO1qrP7UGHeuD86WYwl1sJ1r-HtRlApk_GXkxJ7jKHVLCj8S_Gv-BQytfqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510376669</pqid></control><display><type>article</type><title>Segmentation of liver vessels for surgical purposes</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</creator><creatorcontrib>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</creatorcontrib><description>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661814010210</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied Problems ; Applied sciences ; Artificial intelligence ; Boundaries ; Classification ; Computer Science ; Computer science; control theory; systems ; Cybernetics ; Data processing. List processing. Character string processing ; Density ; Exact sciences and technology ; Image Processing and Computer Vision ; Liver ; Mathematical models ; Medical imaging ; Memory organisation. Data processing ; Morphology ; Neighborhoods ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Skewness ; Software ; Studies ; Surface layer ; Surgery ; Texture</subject><ispartof>Pattern recognition and image analysis, 2014, Vol.24 (1), p.185-187</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1510376669?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11669,27903,27904,36039,36040,44342</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, P.</creatorcontrib><creatorcontrib>Pirner, I.</creatorcontrib><creatorcontrib>Zelezny, M.</creatorcontrib><title>Segmentation of liver vessels for surgical purposes</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</description><subject>Applied Problems</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Cybernetics</subject><subject>Data processing. List processing. Character string processing</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Liver</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Memory organisation. Data processing</subject><subject>Morphology</subject><subject>Neighborhoods</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Skewness</subject><subject>Software</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Surgery</subject><subject>Texture</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_Rmd3sJnuU4j8oeKiew3Y7KSlpNu40Bb-9W1pEFE-z8H7z5u1LkkuEW0SZ380QVK41lpgDgkA4SkaolMq0QHEc31HOdvppcsa8AoASjRglckbLNXUbu2l8l_o6bZsthXRLzNRyWvuQ8hCWjbNt2g-h90x8npzUtmW6OMxx8v748DZ5zqavTy-T-2nmRK4hk07ZeLwwOJ8LQcY4JYsFkIPaxIDKoiLlsC5yQVIuSAGVSi-ICMq5yUmOk5u9bx_8x0C8qdYNO2pb25EfuEIlwRQiVzKiV7_QlR9CF9NFCkEWWmsTKdxTLnjmQHXVh2Ztw2eFUO1qrP7UGHeuD86WYwl1sJ1r-HtRlApk_GXkxJ7jKHVLCj8S_Gv-BQytfqY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Zimmermann, P.</creator><creator>Pirner, I.</creator><creator>Zelezny, M.</creator><general>Springer US</general><general>Pleiades</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2014</creationdate><title>Segmentation of liver vessels for surgical purposes</title><author>Zimmermann, P. ; Pirner, I. ; Zelezny, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied Problems</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Cybernetics</topic><topic>Data processing. List processing. Character string processing</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Liver</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Memory organisation. Data processing</topic><topic>Morphology</topic><topic>Neighborhoods</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Skewness</topic><topic>Software</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Surgery</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, P.</creatorcontrib><creatorcontrib>Pirner, I.</creatorcontrib><creatorcontrib>Zelezny, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, P.</au><au>Pirner, I.</au><au>Zelezny, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of liver vessels for surgical purposes</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2014</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>185</spage><epage>187</epage><pages>185-187</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper we describe a new approach for segmentation of liver from CT images and further the segmentation of liver vessels to create a visualization model for surgical purposes. Since usual approaches, based on density models or edge detection, don’t work well for liver, we investigate the texture of the liver to classify each pixel, whether it lies on the liver-background boundary or outside it. The classifier outputs the boundaries of the liver in each slice, which are used then to create the organ volume. Vessels are segmented then inside the liver volume using a single automatically selected threshold. The result is morphologically closed and smoothed by a Gaussian kernel then.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1054661814010210</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2014, Vol.24 (1), p.185-187 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530972453 |
source | ABI/INFORM global; Springer Nature |
subjects | Applied Problems Applied sciences Artificial intelligence Boundaries Classification Computer Science Computer science control theory systems Cybernetics Data processing. List processing. Character string processing Density Exact sciences and technology Image Processing and Computer Vision Liver Mathematical models Medical imaging Memory organisation. Data processing Morphology Neighborhoods Pattern Recognition Pattern recognition. Digital image processing. Computational geometry Segmentation Skewness Software Studies Surface layer Surgery Texture |
title | Segmentation of liver vessels for surgical purposes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20liver%20vessels%20for%20surgical%20purposes&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Zimmermann,%20P.&rft.date=2014&rft.volume=24&rft.issue=1&rft.spage=185&rft.epage=187&rft.pages=185-187&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661814010210&rft_dat=%3Cproquest_cross%3E3257260601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2460-3c5a212791bb22e99c537d0ec0f92105a15e5c1f742e33de50e856deee08b94e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1510376669&rft_id=info:pmid/&rfr_iscdi=true |