Loading…
Rough set theory: a novel approach for extraction of robust decision rules based on incremental attributes
Rough set theory is a new data mining approach to manage vagueness. It is capable to discover important facts hidden in the data. Literature indicate the current rough set based approaches can’t guarantee that classification of a decision table is credible and it is not able to generate robust decis...
Saved in:
Published in: | Annals of operations research 2014-05, Vol.216 (1), p.163-189 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rough set theory is a new data mining approach to manage vagueness. It is capable to discover important facts hidden in the data. Literature indicate the current rough set based approaches can’t guarantee that classification of a decision table is credible and it is not able to generate robust decision rules when new attributes are incrementally added in. In this study, an incremental attribute oriented rule-extraction algorithm is proposed to solve this deficiency commonly observed in the literature related to decision rule induction. The proposed approach considers incremental attributes based on the alternative rule extraction algorithm (AREA), which was presented for discovering preference-based rules according to the reducts with the maximum of strength index (SI), specifically the case that the desired reducts are not necessarily unique since several reducts could include the same value of SI. Using the AREA, an alternative rule can be defined as the rule which holds identical preference to the original decision rule and may be more attractive to a decision-maker than the original one. Through implementing the proposed approach, it can be effectively operating with new attributes to be added in the database/information systems. It is not required to re-compute the updated data set similar to the first step at the initial stage. The proposed algorithm also excludes these repetitive rules during the solution search stage since most of the rule induction approaches generate the repetitive rules. The proposed approach is capable to efficiently and effectively generate the complete, robust and non-repetitive decision rules. The rules derived from the data set provide an indication of how to effectively study this problem in further investigations. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-013-1352-1 |