Loading…

A subspace projection method for the implementation of interface conditions in a single-drop flow problem

We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transpor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2013-11, Vol.252, p.438-457
Main Authors: Baumler, Kathrin, Bansch, Eberhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043
cites cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043
container_end_page 457
container_issue
container_start_page 438
container_title Journal of computational physics
container_volume 252
creator Baumler, Kathrin
Bansch, Eberhard
description We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.
doi_str_mv 10.1016/j.jcp.2013.06.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530986382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113004543</els_id><sourcerecordid>1464545037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi3USpxeHoCdl2ySjuNLHLGqqtIiVWIDa8txxq2jJA52DlXfHofTNaxGmvm_uf2EfGJQM2DqZqxHt9YNMF6DqqERH8iBQQdV0zJ1Rg4ADau6rmMfyUXOIwBoKfSBhFuaj31erUO6pjii20Jc6IzbSxyoj4luL0jDvE4447LZv9XoaVg2TH6nXFyGsKdzSVJLc1ieJ6yGFFfqp_i6t-0LfUXOvZ0yXr_HS_Lz6_2Pu8fq6fvDt7vbp8pxxbdKgHZWC1Cy15wxVHKQ3nmrZc_a1jaqczgwIXXfDhIktN5L0XHNGyGEA8EvyedT3zL31xHzZuaQHU6TXTAes2GSQ6cV183_pUIJKSTwtkjZSepSzDmhN2sKs01vhoHZHTCjKQ6Y3QEDyhQHCvPlxGA593fAZLILuJT9Qyp_NkMM_6D_AIF9jlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464545037</pqid></control><display><type>article</type><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><source>ScienceDirect Freedom Collection</source><creator>Baumler, Kathrin ; Bansch, Eberhard</creator><creatorcontrib>Baumler, Kathrin ; Bansch, Eberhard</creatorcontrib><description>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.06.024</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer simulation ; Finite element method ; Finite elements ; Formulations ; Function space ; Mathematical analysis ; Multiphase flow ; Projection ; Species transport ; Stagnant cap ; Subspaces ; Two-phase flow</subject><ispartof>Journal of computational physics, 2013-11, Vol.252, p.438-457</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</citedby><cites>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Baumler, Kathrin</creatorcontrib><creatorcontrib>Bansch, Eberhard</creatorcontrib><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><title>Journal of computational physics</title><description>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</description><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Formulations</subject><subject>Function space</subject><subject>Mathematical analysis</subject><subject>Multiphase flow</subject><subject>Projection</subject><subject>Species transport</subject><subject>Stagnant cap</subject><subject>Subspaces</subject><subject>Two-phase flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1TAQhi3USpxeHoCdl2ySjuNLHLGqqtIiVWIDa8txxq2jJA52DlXfHofTNaxGmvm_uf2EfGJQM2DqZqxHt9YNMF6DqqERH8iBQQdV0zJ1Rg4ADau6rmMfyUXOIwBoKfSBhFuaj31erUO6pjii20Jc6IzbSxyoj4luL0jDvE4447LZv9XoaVg2TH6nXFyGsKdzSVJLc1ieJ6yGFFfqp_i6t-0LfUXOvZ0yXr_HS_Lz6_2Pu8fq6fvDt7vbp8pxxbdKgHZWC1Cy15wxVHKQ3nmrZc_a1jaqczgwIXXfDhIktN5L0XHNGyGEA8EvyedT3zL31xHzZuaQHU6TXTAes2GSQ6cV183_pUIJKSTwtkjZSepSzDmhN2sKs01vhoHZHTCjKQ6Y3QEDyhQHCvPlxGA593fAZLILuJT9Qyp_NkMM_6D_AIF9jlQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Baumler, Kathrin</creator><creator>Bansch, Eberhard</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><author>Baumler, Kathrin ; Bansch, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Formulations</topic><topic>Function space</topic><topic>Mathematical analysis</topic><topic>Multiphase flow</topic><topic>Projection</topic><topic>Species transport</topic><topic>Stagnant cap</topic><topic>Subspaces</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumler, Kathrin</creatorcontrib><creatorcontrib>Bansch, Eberhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumler, Kathrin</au><au>Bansch, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</atitle><jtitle>Journal of computational physics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>252</volume><spage>438</spage><epage>457</epage><pages>438-457</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.06.024</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013-11, Vol.252, p.438-457
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1530986382
source ScienceDirect Freedom Collection
subjects Computer simulation
Finite element method
Finite elements
Formulations
Function space
Mathematical analysis
Multiphase flow
Projection
Species transport
Stagnant cap
Subspaces
Two-phase flow
title A subspace projection method for the implementation of interface conditions in a single-drop flow problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20projection%20method%20for%20the%20implementation%20of%20interface%20conditions%20in%20a%20single-drop%20flow%20problem&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Baumler,%20Kathrin&rft.date=2013-11-01&rft.volume=252&rft.spage=438&rft.epage=457&rft.pages=438-457&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.06.024&rft_dat=%3Cproquest_cross%3E1464545037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464545037&rft_id=info:pmid/&rfr_iscdi=true