Loading…
A subspace projection method for the implementation of interface conditions in a single-drop flow problem
We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transpor...
Saved in:
Published in: | Journal of computational physics 2013-11, Vol.252, p.438-457 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043 |
container_end_page | 457 |
container_issue | |
container_start_page | 438 |
container_title | Journal of computational physics |
container_volume | 252 |
creator | Baumler, Kathrin Bansch, Eberhard |
description | We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented. |
doi_str_mv | 10.1016/j.jcp.2013.06.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530986382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113004543</els_id><sourcerecordid>1464545037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi3USpxeHoCdl2ySjuNLHLGqqtIiVWIDa8txxq2jJA52DlXfHofTNaxGmvm_uf2EfGJQM2DqZqxHt9YNMF6DqqERH8iBQQdV0zJ1Rg4ADau6rmMfyUXOIwBoKfSBhFuaj31erUO6pjii20Jc6IzbSxyoj4luL0jDvE4447LZv9XoaVg2TH6nXFyGsKdzSVJLc1ieJ6yGFFfqp_i6t-0LfUXOvZ0yXr_HS_Lz6_2Pu8fq6fvDt7vbp8pxxbdKgHZWC1Cy15wxVHKQ3nmrZc_a1jaqczgwIXXfDhIktN5L0XHNGyGEA8EvyedT3zL31xHzZuaQHU6TXTAes2GSQ6cV183_pUIJKSTwtkjZSepSzDmhN2sKs01vhoHZHTCjKQ6Y3QEDyhQHCvPlxGA593fAZLILuJT9Qyp_NkMM_6D_AIF9jlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464545037</pqid></control><display><type>article</type><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><source>ScienceDirect Freedom Collection</source><creator>Baumler, Kathrin ; Bansch, Eberhard</creator><creatorcontrib>Baumler, Kathrin ; Bansch, Eberhard</creatorcontrib><description>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.06.024</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer simulation ; Finite element method ; Finite elements ; Formulations ; Function space ; Mathematical analysis ; Multiphase flow ; Projection ; Species transport ; Stagnant cap ; Subspaces ; Two-phase flow</subject><ispartof>Journal of computational physics, 2013-11, Vol.252, p.438-457</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</citedby><cites>FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Baumler, Kathrin</creatorcontrib><creatorcontrib>Bansch, Eberhard</creatorcontrib><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><title>Journal of computational physics</title><description>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</description><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Formulations</subject><subject>Function space</subject><subject>Mathematical analysis</subject><subject>Multiphase flow</subject><subject>Projection</subject><subject>Species transport</subject><subject>Stagnant cap</subject><subject>Subspaces</subject><subject>Two-phase flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1TAQhi3USpxeHoCdl2ySjuNLHLGqqtIiVWIDa8txxq2jJA52DlXfHofTNaxGmvm_uf2EfGJQM2DqZqxHt9YNMF6DqqERH8iBQQdV0zJ1Rg4ADau6rmMfyUXOIwBoKfSBhFuaj31erUO6pjii20Jc6IzbSxyoj4luL0jDvE4447LZv9XoaVg2TH6nXFyGsKdzSVJLc1ieJ6yGFFfqp_i6t-0LfUXOvZ0yXr_HS_Lz6_2Pu8fq6fvDt7vbp8pxxbdKgHZWC1Cy15wxVHKQ3nmrZc_a1jaqczgwIXXfDhIktN5L0XHNGyGEA8EvyedT3zL31xHzZuaQHU6TXTAes2GSQ6cV183_pUIJKSTwtkjZSepSzDmhN2sKs01vhoHZHTCjKQ6Y3QEDyhQHCvPlxGA593fAZLILuJT9Qyp_NkMM_6D_AIF9jlQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Baumler, Kathrin</creator><creator>Bansch, Eberhard</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</title><author>Baumler, Kathrin ; Bansch, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Formulations</topic><topic>Function space</topic><topic>Mathematical analysis</topic><topic>Multiphase flow</topic><topic>Projection</topic><topic>Species transport</topic><topic>Stagnant cap</topic><topic>Subspaces</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumler, Kathrin</creatorcontrib><creatorcontrib>Bansch, Eberhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumler, Kathrin</au><au>Bansch, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace projection method for the implementation of interface conditions in a single-drop flow problem</atitle><jtitle>Journal of computational physics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>252</volume><spage>438</spage><epage>457</epage><pages>438-457</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a mesh moving method within a finite element context, where the interface conditions of a two-phase flow problem are conveniently included in suitable chosen subspaces of the general trial and testfunction spaces. A weak formulation of the two-phase flow problem including species transport is derived, where the problem specific function spaces are replaced by appropriate projections operating on standard function spaces. The transfer of the variational formulation to a finite element method is straightforward and results in one set of equations for both fluidic phases. This subspace projection method is applicable to a wide range of interfacial conditions for multiphase flow problems. The method is validated for single-drop flow problems including species transfer. Furthermore, an application to the simulation of stagnant caps is presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.06.024</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2013-11, Vol.252, p.438-457 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530986382 |
source | ScienceDirect Freedom Collection |
subjects | Computer simulation Finite element method Finite elements Formulations Function space Mathematical analysis Multiphase flow Projection Species transport Stagnant cap Subspaces Two-phase flow |
title | A subspace projection method for the implementation of interface conditions in a single-drop flow problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20projection%20method%20for%20the%20implementation%20of%20interface%20conditions%20in%20a%20single-drop%20flow%20problem&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Baumler,%20Kathrin&rft.date=2013-11-01&rft.volume=252&rft.spage=438&rft.epage=457&rft.pages=438-457&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.06.024&rft_dat=%3Cproquest_cross%3E1464545037%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-408ca84065b8311e65d5fcfa85b177a269ced1458b7d50507ff5493832444c043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464545037&rft_id=info:pmid/&rfr_iscdi=true |