Loading…

Theoretical calculations of spin-Hamiltonian parameters for the rhombic-like Mo5+ centers in KTiOPO4 crystal

The spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, were i=x, y and z) for Mo5+ ion occupying the Ti(1) site with approximately rhombic symmetry in KTiOPO4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model,...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2013-12, Vol.430, p.27-30
Main Authors: Yang, Mei, Wen-Chen, Zheng, Hong-Gang, Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, were i=x, y and z) for Mo5+ ion occupying the Ti(1) site with approximately rhombic symmetry in KTiOPO4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model, not only the contribution due to the conventional crystal-field (CF) mechanism, but also those due to the charge-transfer (CT) mechanism are included. The six calculated spin-Hamiltonian parameters with four adjustable parameters are in reasonable agreement with the experimental values. The calculations show that for more accurate calculations of spin-Hamiltonian parameters of the high valence dn ions (e.g., Mo5+ considered here) in crystals, the contribution from CT mechanism, which is ignored in the conventional crystal field theory, should be taken into account. The reasonable crystal field energy levels of Mo5+ in KTiOPO4 are also predicted from calculations.
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2013.08.021