Loading…

The Nonlinear Heat Equation on W-Random Graphs

For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limi...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 2014-06, Vol.212 (3), p.781-803
Main Author: Medvedev, Georgi S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973
cites cdi_FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973
container_end_page 803
container_issue 3
container_start_page 781
container_title Archive for rational mechanics and analysis
container_volume 212
creator Medvedev, Georgi S.
description For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013 ) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.
doi_str_mv 10.1007/s00205-013-0706-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530997278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3261507931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pB_BW8OIl8-UlaZqjjLkJQ0EmHkPsUtfRpVvSHvz2y6gHEYQHj8Dv_wh_Qm4ZTBiAeogACJIC4xQU5FSfkRETHCnkip-TEQBwqiWqS3IV4_b0RJ6PyGS1cdlL65vaOxuyhbNdNjv0tqtbn6X5oG_Wr9tdNg92v4nX5KKyTXQ3P3tM3p9mq-mCLl_nz9PHJS0Fkx1FgYxbpyVIp9WnKG2BWBTKFqCE0yBBrLHKsSy4XCeCLOFKi5wnUWnFx-R-uLsP7aF3sTO7Opauaax3bR8Nkxy0VqiKRO_-0G3bB59-lxRLgxohKTaoMrQxBleZfah3NnwbBubUoBkaNKlBc2rQ6JTBIROT9V8u_Lr8b-gIC_RvJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511512920</pqid></control><display><type>article</type><title>The Nonlinear Heat Equation on W-Random Graphs</title><source>Springer Link</source><creator>Medvedev, Georgi S.</creator><creatorcontrib>Medvedev, Georgi S.</creatorcontrib><description>For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013 ) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-013-0706-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Continuums ; Differential equations ; Evolution ; Fluid- and Aerodynamics ; Graphs ; Heat equations ; Initial value problems ; Mathematical and Computational Physics ; Mathematical models ; Nonlinearity ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2014-06, Vol.212 (3), p.781-803</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973</citedby><cites>FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Medvedev, Georgi S.</creatorcontrib><title>The Nonlinear Heat Equation on W-Random Graphs</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013 ) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Continuums</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Fluid- and Aerodynamics</subject><subject>Graphs</subject><subject>Heat equations</subject><subject>Initial value problems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs7pB_BW8OIl8-UlaZqjjLkJQ0EmHkPsUtfRpVvSHvz2y6gHEYQHj8Dv_wh_Qm4ZTBiAeogACJIC4xQU5FSfkRETHCnkip-TEQBwqiWqS3IV4_b0RJ6PyGS1cdlL65vaOxuyhbNdNjv0tqtbn6X5oG_Wr9tdNg92v4nX5KKyTXQ3P3tM3p9mq-mCLl_nz9PHJS0Fkx1FgYxbpyVIp9WnKG2BWBTKFqCE0yBBrLHKsSy4XCeCLOFKi5wnUWnFx-R-uLsP7aF3sTO7Opauaax3bR8Nkxy0VqiKRO_-0G3bB59-lxRLgxohKTaoMrQxBleZfah3NnwbBubUoBkaNKlBc2rQ6JTBIROT9V8u_Lr8b-gIC_RvJw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Medvedev, Georgi S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>The Nonlinear Heat Equation on W-Random Graphs</title><author>Medvedev, Georgi S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Continuums</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Fluid- and Aerodynamics</topic><topic>Graphs</topic><topic>Heat equations</topic><topic>Initial value problems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, Georgi S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, Georgi S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nonlinear Heat Equation on W-Random Graphs</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>212</volume><issue>3</issue><spage>781</spage><epage>803</epage><pages>781-803</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013 ) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-013-0706-9</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2014-06, Vol.212 (3), p.781-803
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_1530997278
source Springer Link
subjects Classical Mechanics
Complex Systems
Continuums
Differential equations
Evolution
Fluid- and Aerodynamics
Graphs
Heat equations
Initial value problems
Mathematical and Computational Physics
Mathematical models
Nonlinearity
Physics
Physics and Astronomy
Theoretical
title The Nonlinear Heat Equation on W-Random Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nonlinear%20Heat%20Equation%20on%20W-Random%20Graphs&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Medvedev,%20Georgi%20S.&rft.date=2014-06-01&rft.volume=212&rft.issue=3&rft.spage=781&rft.epage=803&rft.pages=781-803&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-013-0706-9&rft_dat=%3Cproquest_cross%3E3261507931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-24213ae9505e97b4ca822887a8074e90504d2f62c835d5e921ae9f9463a80f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1511512920&rft_id=info:pmid/&rfr_iscdi=true