Loading…

Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations

In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is a...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2014-01, Vol.94, p.163-173
Main Authors: Caballero-Águila, R., Hermoso-Carazo, A., Linares-Pérez, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3
cites cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3
container_end_page 173
container_issue
container_start_page 163
container_title Signal processing
container_volume 94
creator Caballero-Águila, R.
Hermoso-Carazo, A.
Linares-Pérez, J.
description In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities. •Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.
doi_str_mv 10.1016/j.sigpro.2013.06.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531001510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016516841300265X</els_id><sourcerecordid>1531001510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0Cb8Ahl0q9JIwTx04uSNWq0EpIvcDZcrwT1ttsDB7vUt6eWRb1yGmkmW9m9H9CXEioJEh9uakoPDymWNUgmwp0BU37SSxkZ-rStK35LBaMtaXUnfoivhJtAJjUsBDrZdy7FNzssRwc4apAymHrcohz4aaHmEJeb6kIczFjfo7pLyP0Qhm5-cyzYhv-cWvHB1J2Yc4B3-i8xiIOhGn_dovOxMnoJsLz93oq7q9_3i1_lbd_bn4vf9yWvtF9LscOaiOHFtRK9egkODUOvh90w1V3Xplu9KBkbXAEVfcejGQMlVe6lfXYnIrvx7vs42nHYew2kMdpcjPGHVnZNpLDtxIYVUfUp0iUcLSPiaOnFyvBHsTajT2KtQexFrRlsbz27f2DI--mMbG8QP93a9ODUfLAXR055Lj7gMmSD8ieViGhz3YVw8ePXgE7UpK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531001510</pqid></control><display><type>article</type><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><source>ScienceDirect Journals</source><creator>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</creator><creatorcontrib>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</creatorcontrib><description>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities. •Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.06.035</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Covariance information ; Delay ; Detection, estimation, filtering, equalization, prediction ; Evolution ; Exact sciences and technology ; Information, signal and communications theory ; Least squares method ; Least-squares estimation ; Mathematical analysis ; Packet dropouts ; Random delays ; Sampling ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; Uncertain observations ; Uncertainty</subject><ispartof>Signal processing, 2014-01, Vol.94, p.163-173</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</citedby><cites>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27907415$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caballero-Águila, R.</creatorcontrib><creatorcontrib>Hermoso-Carazo, A.</creatorcontrib><creatorcontrib>Linares-Pérez, J.</creatorcontrib><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><title>Signal processing</title><description>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities. •Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Covariance information</subject><subject>Delay</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Least squares method</subject><subject>Least-squares estimation</subject><subject>Mathematical analysis</subject><subject>Packet dropouts</subject><subject>Random delays</subject><subject>Sampling</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Uncertain observations</subject><subject>Uncertainty</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0Cb8Ahl0q9JIwTx04uSNWq0EpIvcDZcrwT1ttsDB7vUt6eWRb1yGmkmW9m9H9CXEioJEh9uakoPDymWNUgmwp0BU37SSxkZ-rStK35LBaMtaXUnfoivhJtAJjUsBDrZdy7FNzssRwc4apAymHrcohz4aaHmEJeb6kIczFjfo7pLyP0Qhm5-cyzYhv-cWvHB1J2Yc4B3-i8xiIOhGn_dovOxMnoJsLz93oq7q9_3i1_lbd_bn4vf9yWvtF9LscOaiOHFtRK9egkODUOvh90w1V3Xplu9KBkbXAEVfcejGQMlVe6lfXYnIrvx7vs42nHYew2kMdpcjPGHVnZNpLDtxIYVUfUp0iUcLSPiaOnFyvBHsTajT2KtQexFrRlsbz27f2DI--mMbG8QP93a9ODUfLAXR055Lj7gMmSD8ieViGhz3YVw8ePXgE7UpK8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Caballero-Águila, R.</creator><creator>Hermoso-Carazo, A.</creator><creator>Linares-Pérez, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><author>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Covariance information</topic><topic>Delay</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Least squares method</topic><topic>Least-squares estimation</topic><topic>Mathematical analysis</topic><topic>Packet dropouts</topic><topic>Random delays</topic><topic>Sampling</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Uncertain observations</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero-Águila, R.</creatorcontrib><creatorcontrib>Hermoso-Carazo, A.</creatorcontrib><creatorcontrib>Linares-Pérez, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero-Águila, R.</au><au>Hermoso-Carazo, A.</au><au>Linares-Pérez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</atitle><jtitle>Signal processing</jtitle><date>2014-01</date><risdate>2014</risdate><volume>94</volume><spage>163</spage><epage>173</epage><pages>163-173</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities. •Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.06.035</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2014-01, Vol.94, p.163-173
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_1531001510
source ScienceDirect Journals
subjects Algorithms
Applied sciences
Covariance information
Delay
Detection, estimation, filtering, equalization, prediction
Evolution
Exact sciences and technology
Information, signal and communications theory
Least squares method
Least-squares estimation
Mathematical analysis
Packet dropouts
Random delays
Sampling
Sampling, quantization
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
Uncertain observations
Uncertainty
title Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariance-based%20estimation%20algorithms%20in%20networked%20systems%20with%20mixed%20uncertainties%20in%20the%20observations&rft.jtitle=Signal%20processing&rft.au=Caballero-%C3%81guila,%20R.&rft.date=2014-01&rft.volume=94&rft.spage=163&rft.epage=173&rft.pages=163-173&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.06.035&rft_dat=%3Cproquest_cross%3E1531001510%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531001510&rft_id=info:pmid/&rfr_iscdi=true