Loading…
Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations
In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is a...
Saved in:
Published in: | Signal processing 2014-01, Vol.94, p.163-173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3 |
container_end_page | 173 |
container_issue | |
container_start_page | 163 |
container_title | Signal processing |
container_volume | 94 |
creator | Caballero-Águila, R. Hermoso-Carazo, A. Linares-Pérez, J. |
description | In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities.
•Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results. |
doi_str_mv | 10.1016/j.sigpro.2013.06.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531001510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016516841300265X</els_id><sourcerecordid>1531001510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0Cb8Ahl0q9JIwTx04uSNWq0EpIvcDZcrwT1ttsDB7vUt6eWRb1yGmkmW9m9H9CXEioJEh9uakoPDymWNUgmwp0BU37SSxkZ-rStK35LBaMtaXUnfoivhJtAJjUsBDrZdy7FNzssRwc4apAymHrcohz4aaHmEJeb6kIczFjfo7pLyP0Qhm5-cyzYhv-cWvHB1J2Yc4B3-i8xiIOhGn_dovOxMnoJsLz93oq7q9_3i1_lbd_bn4vf9yWvtF9LscOaiOHFtRK9egkODUOvh90w1V3Xplu9KBkbXAEVfcejGQMlVe6lfXYnIrvx7vs42nHYew2kMdpcjPGHVnZNpLDtxIYVUfUp0iUcLSPiaOnFyvBHsTajT2KtQexFrRlsbz27f2DI--mMbG8QP93a9ODUfLAXR055Lj7gMmSD8ieViGhz3YVw8ePXgE7UpK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531001510</pqid></control><display><type>article</type><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><source>ScienceDirect Journals</source><creator>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</creator><creatorcontrib>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</creatorcontrib><description>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities.
•Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.06.035</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Covariance information ; Delay ; Detection, estimation, filtering, equalization, prediction ; Evolution ; Exact sciences and technology ; Information, signal and communications theory ; Least squares method ; Least-squares estimation ; Mathematical analysis ; Packet dropouts ; Random delays ; Sampling ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; Uncertain observations ; Uncertainty</subject><ispartof>Signal processing, 2014-01, Vol.94, p.163-173</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</citedby><cites>FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27907415$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caballero-Águila, R.</creatorcontrib><creatorcontrib>Hermoso-Carazo, A.</creatorcontrib><creatorcontrib>Linares-Pérez, J.</creatorcontrib><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><title>Signal processing</title><description>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities.
•Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Covariance information</subject><subject>Delay</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Least squares method</subject><subject>Least-squares estimation</subject><subject>Mathematical analysis</subject><subject>Packet dropouts</subject><subject>Random delays</subject><subject>Sampling</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Uncertain observations</subject><subject>Uncertainty</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0Cb8Ahl0q9JIwTx04uSNWq0EpIvcDZcrwT1ttsDB7vUt6eWRb1yGmkmW9m9H9CXEioJEh9uakoPDymWNUgmwp0BU37SSxkZ-rStK35LBaMtaXUnfoivhJtAJjUsBDrZdy7FNzssRwc4apAymHrcohz4aaHmEJeb6kIczFjfo7pLyP0Qhm5-cyzYhv-cWvHB1J2Yc4B3-i8xiIOhGn_dovOxMnoJsLz93oq7q9_3i1_lbd_bn4vf9yWvtF9LscOaiOHFtRK9egkODUOvh90w1V3Xplu9KBkbXAEVfcejGQMlVe6lfXYnIrvx7vs42nHYew2kMdpcjPGHVnZNpLDtxIYVUfUp0iUcLSPiaOnFyvBHsTajT2KtQexFrRlsbz27f2DI--mMbG8QP93a9ODUfLAXR055Lj7gMmSD8ieViGhz3YVw8ePXgE7UpK8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Caballero-Águila, R.</creator><creator>Hermoso-Carazo, A.</creator><creator>Linares-Pérez, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</title><author>Caballero-Águila, R. ; Hermoso-Carazo, A. ; Linares-Pérez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Covariance information</topic><topic>Delay</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Least squares method</topic><topic>Least-squares estimation</topic><topic>Mathematical analysis</topic><topic>Packet dropouts</topic><topic>Random delays</topic><topic>Sampling</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Uncertain observations</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caballero-Águila, R.</creatorcontrib><creatorcontrib>Hermoso-Carazo, A.</creatorcontrib><creatorcontrib>Linares-Pérez, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caballero-Águila, R.</au><au>Hermoso-Carazo, A.</au><au>Linares-Pérez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations</atitle><jtitle>Signal processing</jtitle><date>2014-01</date><risdate>2014</risdate><volume>94</volume><spage>163</spage><epage>173</epage><pages>163-173</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper a new observation model is proposed for networked systems subject to three sources of uncertainty. On the one hand, the measured outputs can be only noise (uncertain observations) and, on the other hand, one-step delays or packet dropouts may occur randomly during transmission; it is assumed that, at each sampling time, it is not known if some of these uncertainties have occurred. The random uncertainties are modelled by sequences of Bernoulli random variables. Under these assumptions, recursive least-squares linear estimation algorithms are derived by an innovation approach, without requiring knowledge of the signal evolution equation, but only the covariances of the processes involved in the observation model and the uncertainty probabilities.
•Uncertain observations with random transmission delays and dropouts are considered.•Recursive LS linear prediction, filtering and smoothing algorithms are proposed.•The algorithms, based on covariances, are derived using an innovation approach.•Recursive formulas for the estimation error covariance matrices are also proposed.•Non-stationary and stationary signal examples are given to illustrate the results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.06.035</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2014-01, Vol.94, p.163-173 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531001510 |
source | ScienceDirect Journals |
subjects | Algorithms Applied sciences Covariance information Delay Detection, estimation, filtering, equalization, prediction Evolution Exact sciences and technology Information, signal and communications theory Least squares method Least-squares estimation Mathematical analysis Packet dropouts Random delays Sampling Sampling, quantization Signal and communications theory Signal processing Signal, noise Telecommunications and information theory Uncertain observations Uncertainty |
title | Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariance-based%20estimation%20algorithms%20in%20networked%20systems%20with%20mixed%20uncertainties%20in%20the%20observations&rft.jtitle=Signal%20processing&rft.au=Caballero-%C3%81guila,%20R.&rft.date=2014-01&rft.volume=94&rft.spage=163&rft.epage=173&rft.pages=163-173&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.06.035&rft_dat=%3Cproquest_cross%3E1531001510%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-f80271b504d49ea10a4fbc9b634fb68c478fc04127ef0429c071ea1e4c46512f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531001510&rft_id=info:pmid/&rfr_iscdi=true |