Loading…

An upper bound on the sum of powers of the degrees of simple 1-planar graphs

A 1-planar graph is a graph that can be drawn in the plane such that each edge is crossed by at most one other edge. For a fixed integer k≥2 and a simple 1-planar graph G on n vertices it is proven that 2(n−1)k+O(n) is an upper bound on the sum of the k-th powers of the degrees of G.

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2014-03, Vol.165, p.146-151
Main Authors: Czap, Július, Harant, Jochen, Hudák, Dávid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3
cites cdi_FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3
container_end_page 151
container_issue
container_start_page 146
container_title Discrete Applied Mathematics
container_volume 165
creator Czap, Július
Harant, Jochen
Hudák, Dávid
description A 1-planar graph is a graph that can be drawn in the plane such that each edge is crossed by at most one other edge. For a fixed integer k≥2 and a simple 1-planar graph G on n vertices it is proven that 2(n−1)k+O(n) is an upper bound on the sum of the k-th powers of the degrees of G.
doi_str_mv 10.1016/j.dam.2012.11.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531003006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12004258</els_id><sourcerecordid>1531003006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG85emnNNLRp8bQs_oMFLwreQppMd7u0TUxaxW9vaj17mnnD-w0zj5BrYCkwKG6PqVF9mjHIUoCUMTghKyhFlhRCwClZRU-RZFC-n5OLEI4sOqJakd1moJNz6Gltp8FQO9DxgDRMPbUNdfYLfZi7eWhw7xF_ZWh71yGFxHVqUJ7uvXKHcEnOGtUFvPqra_L2cP-6fUp2L4_P280u0VzwMeFlwxvGTQ5ZU-a51gYFlFArUeVVg0UNlWFG1JiVGIGClZUSxoBiBqHOka_JzbLXefsxYRhl3waNXbwF7RQk5BwY44wV0QqLVXsbgsdGOt_2yn9LYHJOTh5lTE7OyUkAGXOJzN3CYPzhs0Uvg25x0Ghaj3qUxrb_0D9henVj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531003006</pqid></control><display><type>article</type><title>An upper bound on the sum of powers of the degrees of simple 1-planar graphs</title><source>ScienceDirect Freedom Collection</source><creator>Czap, Július ; Harant, Jochen ; Hudák, Dávid</creator><creatorcontrib>Czap, Július ; Harant, Jochen ; Hudák, Dávid</creatorcontrib><description>A 1-planar graph is a graph that can be drawn in the plane such that each edge is crossed by at most one other edge. For a fixed integer k≥2 and a simple 1-planar graph G on n vertices it is proven that 2(n−1)k+O(n) is an upper bound on the sum of the k-th powers of the degrees of G.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.11.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>1-planar graph ; Degree sum ; Graphs ; Integers ; Mathematical analysis ; Planes ; Upper bounds</subject><ispartof>Discrete Applied Mathematics, 2014-03, Vol.165, p.146-151</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3</citedby><cites>FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Czap, Július</creatorcontrib><creatorcontrib>Harant, Jochen</creatorcontrib><creatorcontrib>Hudák, Dávid</creatorcontrib><title>An upper bound on the sum of powers of the degrees of simple 1-planar graphs</title><title>Discrete Applied Mathematics</title><description>A 1-planar graph is a graph that can be drawn in the plane such that each edge is crossed by at most one other edge. For a fixed integer k≥2 and a simple 1-planar graph G on n vertices it is proven that 2(n−1)k+O(n) is an upper bound on the sum of the k-th powers of the degrees of G.</description><subject>1-planar graph</subject><subject>Degree sum</subject><subject>Graphs</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Planes</subject><subject>Upper bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG85emnNNLRp8bQs_oMFLwreQppMd7u0TUxaxW9vaj17mnnD-w0zj5BrYCkwKG6PqVF9mjHIUoCUMTghKyhFlhRCwClZRU-RZFC-n5OLEI4sOqJakd1moJNz6Gltp8FQO9DxgDRMPbUNdfYLfZi7eWhw7xF_ZWh71yGFxHVqUJ7uvXKHcEnOGtUFvPqra_L2cP-6fUp2L4_P280u0VzwMeFlwxvGTQ5ZU-a51gYFlFArUeVVg0UNlWFG1JiVGIGClZUSxoBiBqHOka_JzbLXefsxYRhl3waNXbwF7RQk5BwY44wV0QqLVXsbgsdGOt_2yn9LYHJOTh5lTE7OyUkAGXOJzN3CYPzhs0Uvg25x0Ghaj3qUxrb_0D9henVj</recordid><startdate>20140311</startdate><enddate>20140311</enddate><creator>Czap, Július</creator><creator>Harant, Jochen</creator><creator>Hudák, Dávid</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140311</creationdate><title>An upper bound on the sum of powers of the degrees of simple 1-planar graphs</title><author>Czap, Július ; Harant, Jochen ; Hudák, Dávid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1-planar graph</topic><topic>Degree sum</topic><topic>Graphs</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Planes</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czap, Július</creatorcontrib><creatorcontrib>Harant, Jochen</creatorcontrib><creatorcontrib>Hudák, Dávid</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czap, Július</au><au>Harant, Jochen</au><au>Hudák, Dávid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An upper bound on the sum of powers of the degrees of simple 1-planar graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-03-11</date><risdate>2014</risdate><volume>165</volume><spage>146</spage><epage>151</epage><pages>146-151</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A 1-planar graph is a graph that can be drawn in the plane such that each edge is crossed by at most one other edge. For a fixed integer k≥2 and a simple 1-planar graph G on n vertices it is proven that 2(n−1)k+O(n) is an upper bound on the sum of the k-th powers of the degrees of G.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.11.001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2014-03, Vol.165, p.146-151
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1531003006
source ScienceDirect Freedom Collection
subjects 1-planar graph
Degree sum
Graphs
Integers
Mathematical analysis
Planes
Upper bounds
title An upper bound on the sum of powers of the degrees of simple 1-planar graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20upper%20bound%20on%20the%20sum%20of%20powers%20of%20the%20degrees%20of%20simple%201-planar%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Czap,%20J%C3%BAlius&rft.date=2014-03-11&rft.volume=165&rft.spage=146&rft.epage=151&rft.pages=146-151&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.11.001&rft_dat=%3Cproquest_cross%3E1531003006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-38f3f03d512f855ccde7181ba7959fe6b19d0d7be28e3736089a7dd1a0de1b5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531003006&rft_id=info:pmid/&rfr_iscdi=true