Loading…
An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation
This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution,...
Saved in:
Published in: | Signal processing 2014-01, Vol.94, p.503-513 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83 |
container_end_page | 513 |
container_issue | |
container_start_page | 503 |
container_title | Signal processing |
container_volume | 94 |
creator | Perez, Fábio Luis de Souza, Francisco das Chagas Seara, Rui |
description | This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated.
•An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm. |
doi_str_mv | 10.1016/j.sigpro.2013.06.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531011208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168413002600</els_id><sourcerecordid>1531011208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEuXyBgxekFgS7DqxnQUJIW5SJRaYrRPnpHWVxK2dFvH2OBQxMp0zfP-5fIRccZZzxuXtOo9uuQk-nzMuciZzJtgRmXGt5pkqS3VMZgkrMy51cUrOYlwzlkjJZqS5H6jrU3aPDe0RhixudxCQfqJbrkba4N7B6PyQJWbjw9TCiHQJbqDQLX1w46qnNcSU9wPFEHygsBu99SFg95O9ICctdBEvf-s5-Xh6fH94yRZvz68P94vMClmNGWgGjVBSKw4V1IWsyxIEFjVawaVCpRlvtax0q2Qtq1Jr0KKQXJRMWJn6c3JzmJtu3e4wjqZ30WLXwYB-Fw0vRfLF52xCiwNqg48xYGs2wfUQvgxnZpJq1uYg1UxSDZMmSU2x698NEC10bYDBuviXnauKqaKYxt8dOEzv7h0GE63DwWLjAtrRNN79v-gbraaQXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531011208</pqid></control><display><type>article</type><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><source>Elsevier</source><creator>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</creator><creatorcontrib>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</creatorcontrib><description>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated.
•An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.06.030</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive filtering ; Algorithms ; Applied sciences ; Autocorrelation ; Convergence ; Detection, estimation, filtering, equalization, prediction ; Error autocorrelation ; Errors ; Exact sciences and technology ; Gain ; Information, signal and communications theory ; Mean-square weight deviation-proportionate gain ; Noise measurement ; Policies ; Proportionate normalized least-mean-square (PNLMS) algorithm ; Signal and communications theory ; Signal, noise ; System identification ; Telecommunications and information theory ; Variance</subject><ispartof>Signal processing, 2014-01, Vol.94, p.503-513</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</citedby><cites>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27907448$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Fábio Luis</creatorcontrib><creatorcontrib>de Souza, Francisco das Chagas</creatorcontrib><creatorcontrib>Seara, Rui</creatorcontrib><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><title>Signal processing</title><description>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated.
•An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</description><subject>Adaptive filtering</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Error autocorrelation</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Mean-square weight deviation-proportionate gain</subject><subject>Noise measurement</subject><subject>Policies</subject><subject>Proportionate normalized least-mean-square (PNLMS) algorithm</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>System identification</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEuXyBgxekFgS7DqxnQUJIW5SJRaYrRPnpHWVxK2dFvH2OBQxMp0zfP-5fIRccZZzxuXtOo9uuQk-nzMuciZzJtgRmXGt5pkqS3VMZgkrMy51cUrOYlwzlkjJZqS5H6jrU3aPDe0RhixudxCQfqJbrkba4N7B6PyQJWbjw9TCiHQJbqDQLX1w46qnNcSU9wPFEHygsBu99SFg95O9ICctdBEvf-s5-Xh6fH94yRZvz68P94vMClmNGWgGjVBSKw4V1IWsyxIEFjVawaVCpRlvtax0q2Qtq1Jr0KKQXJRMWJn6c3JzmJtu3e4wjqZ30WLXwYB-Fw0vRfLF52xCiwNqg48xYGs2wfUQvgxnZpJq1uYg1UxSDZMmSU2x698NEC10bYDBuviXnauKqaKYxt8dOEzv7h0GE63DwWLjAtrRNN79v-gbraaQXw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Perez, Fábio Luis</creator><creator>de Souza, Francisco das Chagas</creator><creator>Seara, Rui</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><author>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive filtering</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Error autocorrelation</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Mean-square weight deviation-proportionate gain</topic><topic>Noise measurement</topic><topic>Policies</topic><topic>Proportionate normalized least-mean-square (PNLMS) algorithm</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>System identification</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Fábio Luis</creatorcontrib><creatorcontrib>de Souza, Francisco das Chagas</creatorcontrib><creatorcontrib>Seara, Rui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Fábio Luis</au><au>de Souza, Francisco das Chagas</au><au>Seara, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</atitle><jtitle>Signal processing</jtitle><date>2014-01</date><risdate>2014</risdate><volume>94</volume><spage>503</spage><epage>513</epage><pages>503-513</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated.
•An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.06.030</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2014-01, Vol.94, p.503-513 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531011208 |
source | Elsevier |
subjects | Adaptive filtering Algorithms Applied sciences Autocorrelation Convergence Detection, estimation, filtering, equalization, prediction Error autocorrelation Errors Exact sciences and technology Gain Information, signal and communications theory Mean-square weight deviation-proportionate gain Noise measurement Policies Proportionate normalized least-mean-square (PNLMS) algorithm Signal and communications theory Signal, noise System identification Telecommunications and information theory Variance |
title | An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20mean-square%20weight%20deviation-proportionate%20gain%20algorithm%20based%20on%20error%20autocorrelation&rft.jtitle=Signal%20processing&rft.au=Perez,%20F%C3%A1bio%20Luis&rft.date=2014-01&rft.volume=94&rft.spage=503&rft.epage=513&rft.pages=503-513&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.06.030&rft_dat=%3Cproquest_cross%3E1531011208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531011208&rft_id=info:pmid/&rfr_iscdi=true |