Loading…

An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation

This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution,...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2014-01, Vol.94, p.503-513
Main Authors: Perez, Fábio Luis, de Souza, Francisco das Chagas, Seara, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83
cites cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83
container_end_page 513
container_issue
container_start_page 503
container_title Signal processing
container_volume 94
creator Perez, Fábio Luis
de Souza, Francisco das Chagas
Seara, Rui
description This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated. •An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.
doi_str_mv 10.1016/j.sigpro.2013.06.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531011208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168413002600</els_id><sourcerecordid>1531011208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEuXyBgxekFgS7DqxnQUJIW5SJRaYrRPnpHWVxK2dFvH2OBQxMp0zfP-5fIRccZZzxuXtOo9uuQk-nzMuciZzJtgRmXGt5pkqS3VMZgkrMy51cUrOYlwzlkjJZqS5H6jrU3aPDe0RhixudxCQfqJbrkba4N7B6PyQJWbjw9TCiHQJbqDQLX1w46qnNcSU9wPFEHygsBu99SFg95O9ICctdBEvf-s5-Xh6fH94yRZvz68P94vMClmNGWgGjVBSKw4V1IWsyxIEFjVawaVCpRlvtax0q2Qtq1Jr0KKQXJRMWJn6c3JzmJtu3e4wjqZ30WLXwYB-Fw0vRfLF52xCiwNqg48xYGs2wfUQvgxnZpJq1uYg1UxSDZMmSU2x698NEC10bYDBuviXnauKqaKYxt8dOEzv7h0GE63DwWLjAtrRNN79v-gbraaQXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531011208</pqid></control><display><type>article</type><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><source>Elsevier</source><creator>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</creator><creatorcontrib>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</creatorcontrib><description>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated. •An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.06.030</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive filtering ; Algorithms ; Applied sciences ; Autocorrelation ; Convergence ; Detection, estimation, filtering, equalization, prediction ; Error autocorrelation ; Errors ; Exact sciences and technology ; Gain ; Information, signal and communications theory ; Mean-square weight deviation-proportionate gain ; Noise measurement ; Policies ; Proportionate normalized least-mean-square (PNLMS) algorithm ; Signal and communications theory ; Signal, noise ; System identification ; Telecommunications and information theory ; Variance</subject><ispartof>Signal processing, 2014-01, Vol.94, p.503-513</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</citedby><cites>FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27907448$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Fábio Luis</creatorcontrib><creatorcontrib>de Souza, Francisco das Chagas</creatorcontrib><creatorcontrib>Seara, Rui</creatorcontrib><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><title>Signal processing</title><description>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated. •An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</description><subject>Adaptive filtering</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Error autocorrelation</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Mean-square weight deviation-proportionate gain</subject><subject>Noise measurement</subject><subject>Policies</subject><subject>Proportionate normalized least-mean-square (PNLMS) algorithm</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>System identification</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEuXyBgxekFgS7DqxnQUJIW5SJRaYrRPnpHWVxK2dFvH2OBQxMp0zfP-5fIRccZZzxuXtOo9uuQk-nzMuciZzJtgRmXGt5pkqS3VMZgkrMy51cUrOYlwzlkjJZqS5H6jrU3aPDe0RhixudxCQfqJbrkba4N7B6PyQJWbjw9TCiHQJbqDQLX1w46qnNcSU9wPFEHygsBu99SFg95O9ICctdBEvf-s5-Xh6fH94yRZvz68P94vMClmNGWgGjVBSKw4V1IWsyxIEFjVawaVCpRlvtax0q2Qtq1Jr0KKQXJRMWJn6c3JzmJtu3e4wjqZ30WLXwYB-Fw0vRfLF52xCiwNqg48xYGs2wfUQvgxnZpJq1uYg1UxSDZMmSU2x698NEC10bYDBuviXnauKqaKYxt8dOEzv7h0GE63DwWLjAtrRNN79v-gbraaQXw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Perez, Fábio Luis</creator><creator>de Souza, Francisco das Chagas</creator><creator>Seara, Rui</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</title><author>Perez, Fábio Luis ; de Souza, Francisco das Chagas ; Seara, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive filtering</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Error autocorrelation</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Mean-square weight deviation-proportionate gain</topic><topic>Noise measurement</topic><topic>Policies</topic><topic>Proportionate normalized least-mean-square (PNLMS) algorithm</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>System identification</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Fábio Luis</creatorcontrib><creatorcontrib>de Souza, Francisco das Chagas</creatorcontrib><creatorcontrib>Seara, Rui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Fábio Luis</au><au>de Souza, Francisco das Chagas</au><au>Seara, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation</atitle><jtitle>Signal processing</jtitle><date>2014-01</date><risdate>2014</risdate><volume>94</volume><spage>503</spage><epage>513</epage><pages>503-513</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>This paper presents an alternative approach to the gain distribution policy used in the z2-proportionate algorithm. The gain policy of the z2-proportionate uses a rule that combines the mean-square weight deviation-proportionate gain and a uniform one to obtain the whole algorithm gain distribution, leading to very good convergence characteristics. However, such a gain combination law is dependent on the knowledge of the measurement noise variance in the system, which in practice is not always readily available. Here, aiming to circumvent such dependence, a new strategy of gain distribution based on error autocorrelation is introduced. The proposed approach makes the use of the mean-square weight deviation-proportionate gain more attractive for real-world applications. Simulation results show that the proposed algorithm outperforms the z2-proportionate in terms of convergence characteristics for cases in which the measurement noise variance is either unknown or poorly estimated. •An improved z2-proportionate algorithm based on error autocorrelation is proposed.•The novel approach does not require the knowledge of the measurement noise variance.•The new algorithm is suited for stationary and nonstationary measurement noise environment.•The new approach makes the z2-proportionate for practical applications more attractive.•Results of numerical simulation confirm the effectiveness of the proposed algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.06.030</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2014-01, Vol.94, p.503-513
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_1531011208
source Elsevier
subjects Adaptive filtering
Algorithms
Applied sciences
Autocorrelation
Convergence
Detection, estimation, filtering, equalization, prediction
Error autocorrelation
Errors
Exact sciences and technology
Gain
Information, signal and communications theory
Mean-square weight deviation-proportionate gain
Noise measurement
Policies
Proportionate normalized least-mean-square (PNLMS) algorithm
Signal and communications theory
Signal, noise
System identification
Telecommunications and information theory
Variance
title An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20mean-square%20weight%20deviation-proportionate%20gain%20algorithm%20based%20on%20error%20autocorrelation&rft.jtitle=Signal%20processing&rft.au=Perez,%20F%C3%A1bio%20Luis&rft.date=2014-01&rft.volume=94&rft.spage=503&rft.epage=513&rft.pages=503-513&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.06.030&rft_dat=%3Cproquest_cross%3E1531011208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-a80ad376871a9ab46b55a3e4bec3167e7801f8698f76b69588a834613503c6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531011208&rft_id=info:pmid/&rfr_iscdi=true