Loading…

Bisimulation equivalence and regularity for real-time one-counter automata

A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε-transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-ti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer and system sciences 2014-06, Vol.80 (4), p.720-743
Main Authors: Bohm, Stanislav, Goller, Stefan, Jancar, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3
cites cdi_FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3
container_end_page 743
container_issue 4
container_start_page 720
container_title Journal of computer and system sciences
container_volume 80
creator Bohm, Stanislav
Goller, Stefan
Jancar, Petr
description A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε-transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACE-hardness [25]. The second main result shows NL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove P-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular. •Bisimulation equivalence is PSPACE-complete for real-time one-counter automata.•Language equivalence is NL-complete for deterministic real-time one-counter automata.•Finiteness w.r.t. bisimilarity is P-complete for real-time one-counter automata.•Regularity is NL-complete for deterministic real-time one-counter automata.
doi_str_mv 10.1016/j.jcss.2013.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531014214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000013001906</els_id><sourcerecordid>1531014214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzjlyCVh_YjTSlyg4qlKXOBsOX4gR0nc2k6l_nsclTN7Wa1mZqX5ELrFUGHA_L6rOhVjRQDTCuMKgJ6hBYY1lKQh7BwtAAgpIc8luoqxA8C45nSBPp5cdMPUy-T8WJj95A6yN6MyhRx1EcxPloJLx8L6kE_Zl8kNpvCjKZWfxmRCIafkB5nkNbqwso_m5m8v0ffL89fmrdx-vr5vHrelok2TSkpqZtesoZys7EqvLCFUt9wqpgm3oCnhkhCu120NNldoGYeWrsEyYmvVSLpEd6e_u-D3k4lJDC4q0_dyNH6KAtc0M2EEs2wlJ6sKPsZgrNgFN8hwFBjEDE50YgYnZnACY5HB5dDDKWRyiYMzQUTlZiTaBaOS0N79F_8FPk121w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531014214</pqid></control><display><type>article</type><title>Bisimulation equivalence and regularity for real-time one-counter automata</title><source>ScienceDirect Freedom Collection</source><creator>Bohm, Stanislav ; Goller, Stefan ; Jancar, Petr</creator><creatorcontrib>Bohm, Stanislav ; Goller, Stefan ; Jancar, Petr</creatorcontrib><description>A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε-transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACE-hardness [25]. The second main result shows NL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove P-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular. •Bisimulation equivalence is PSPACE-complete for real-time one-counter automata.•Language equivalence is NL-complete for deterministic real-time one-counter automata.•Finiteness w.r.t. bisimilarity is P-complete for real-time one-counter automata.•Regularity is NL-complete for deterministic real-time one-counter automata.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2013.11.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Automation ; Bisimulation equivalence ; Complexity ; Equivalence ; Language equivalence ; Mathematical analysis ; One-counter automaton ; Real time ; Regularity ; Semantics ; Stacks</subject><ispartof>Journal of computer and system sciences, 2014-06, Vol.80 (4), p.720-743</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3</citedby><cites>FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Goller, Stefan</creatorcontrib><creatorcontrib>Jancar, Petr</creatorcontrib><title>Bisimulation equivalence and regularity for real-time one-counter automata</title><title>Journal of computer and system sciences</title><description>A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε-transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACE-hardness [25]. The second main result shows NL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove P-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular. •Bisimulation equivalence is PSPACE-complete for real-time one-counter automata.•Language equivalence is NL-complete for deterministic real-time one-counter automata.•Finiteness w.r.t. bisimilarity is P-complete for real-time one-counter automata.•Regularity is NL-complete for deterministic real-time one-counter automata.</description><subject>Automation</subject><subject>Bisimulation equivalence</subject><subject>Complexity</subject><subject>Equivalence</subject><subject>Language equivalence</subject><subject>Mathematical analysis</subject><subject>One-counter automaton</subject><subject>Real time</subject><subject>Regularity</subject><subject>Semantics</subject><subject>Stacks</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzjlyCVh_YjTSlyg4qlKXOBsOX4gR0nc2k6l_nsclTN7Wa1mZqX5ELrFUGHA_L6rOhVjRQDTCuMKgJ6hBYY1lKQh7BwtAAgpIc8luoqxA8C45nSBPp5cdMPUy-T8WJj95A6yN6MyhRx1EcxPloJLx8L6kE_Zl8kNpvCjKZWfxmRCIafkB5nkNbqwso_m5m8v0ffL89fmrdx-vr5vHrelok2TSkpqZtesoZys7EqvLCFUt9wqpgm3oCnhkhCu120NNldoGYeWrsEyYmvVSLpEd6e_u-D3k4lJDC4q0_dyNH6KAtc0M2EEs2wlJ6sKPsZgrNgFN8hwFBjEDE50YgYnZnACY5HB5dDDKWRyiYMzQUTlZiTaBaOS0N79F_8FPk121w</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Bohm, Stanislav</creator><creator>Goller, Stefan</creator><creator>Jancar, Petr</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Bisimulation equivalence and regularity for real-time one-counter automata</title><author>Bohm, Stanislav ; Goller, Stefan ; Jancar, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automation</topic><topic>Bisimulation equivalence</topic><topic>Complexity</topic><topic>Equivalence</topic><topic>Language equivalence</topic><topic>Mathematical analysis</topic><topic>One-counter automaton</topic><topic>Real time</topic><topic>Regularity</topic><topic>Semantics</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Goller, Stefan</creatorcontrib><creatorcontrib>Jancar, Petr</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohm, Stanislav</au><au>Goller, Stefan</au><au>Jancar, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bisimulation equivalence and regularity for real-time one-counter automata</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>80</volume><issue>4</issue><spage>720</spage><epage>743</epage><pages>720-743</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε-transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACE-hardness [25]. The second main result shows NL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove P-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular. •Bisimulation equivalence is PSPACE-complete for real-time one-counter automata.•Language equivalence is NL-complete for deterministic real-time one-counter automata.•Finiteness w.r.t. bisimilarity is P-complete for real-time one-counter automata.•Regularity is NL-complete for deterministic real-time one-counter automata.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2013.11.003</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2014-06, Vol.80 (4), p.720-743
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_1531014214
source ScienceDirect Freedom Collection
subjects Automation
Bisimulation equivalence
Complexity
Equivalence
Language equivalence
Mathematical analysis
One-counter automaton
Real time
Regularity
Semantics
Stacks
title Bisimulation equivalence and regularity for real-time one-counter automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bisimulation%20equivalence%20and%20regularity%20for%20real-time%20one-counter%20automata&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Bohm,%20Stanislav&rft.date=2014-06-01&rft.volume=80&rft.issue=4&rft.spage=720&rft.epage=743&rft.pages=720-743&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2013.11.003&rft_dat=%3Cproquest_cross%3E1531014214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-3254f9473628f8d8f223db6fc4d26f0d326a226d9b50f109b460b390f42f5c7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531014214&rft_id=info:pmid/&rfr_iscdi=true