Loading…

The Hardness of Being Private

Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy f...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computation theory 2014-03, Vol.6 (1), p.1-24
Main Authors: Ada, Anil, Chattopadhyay, Arkadev, Cook, Stephen A., Fontes, Lila, Koucký, Michal, Pitassi, Toniann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3
cites cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3
container_end_page 24
container_issue 1
container_start_page 1
container_title ACM transactions on computation theory
container_volume 6
creator Ada, Anil
Chattopadhyay, Arkadev
Cook, Stephen A.
Fontes, Lila
Koucký, Michal
Pitassi, Toniann
description Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of approximate privacy . Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions. Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].
doi_str_mv 10.1145/2567671
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531017697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</originalsourceid><addsrcrecordid>eNo9kM1KxDAURoMoOFbxCYTudFPNzd9tljqoIwzoYlyHNLnVSqcdk47g26vM4Oo7i4-zOIydA78GUPpGaIMG4YDNwCpRSWXE4T9rdcxOcv7g3Bgp5IxdrN6pXPgUB8q5HNvyjrrhrXxJ3Zef6JQdtb7PdLbfgr0-3K_mi2r5_Pg0v11WAVBOFaAlY73ARrXRU7AoCTV4QOS-aRQBbyKnKIVVHsGY2BpdAwTdxDrWQRbsaufdpPFzS3ly6y4H6ns_0LjNDrQEDmh-xQW73F1DGnNO1LpN6tY-fTvg7i-A2weQPw3gSmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531017697</pqid></control><display><type>article</type><title>The Hardness of Being Private</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</creator><creatorcontrib>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</creatorcontrib><description>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of approximate privacy . Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions. Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</description><identifier>ISSN: 1942-3454</identifier><identifier>EISSN: 1942-3462</identifier><identifier>DOI: 10.1145/2567671</identifier><language>eng</language><subject>Approximation ; Asymptotic properties ; Hardness ; Mathematical analysis ; Mathematical models ; Privacy ; Tradeoffs ; Upper bounds</subject><ispartof>ACM transactions on computation theory, 2014-03, Vol.6 (1), p.1-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</citedby><cites>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ada, Anil</creatorcontrib><creatorcontrib>Chattopadhyay, Arkadev</creatorcontrib><creatorcontrib>Cook, Stephen A.</creatorcontrib><creatorcontrib>Fontes, Lila</creatorcontrib><creatorcontrib>Koucký, Michal</creatorcontrib><creatorcontrib>Pitassi, Toniann</creatorcontrib><title>The Hardness of Being Private</title><title>ACM transactions on computation theory</title><description>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of approximate privacy . Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions. Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Hardness</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Privacy</subject><subject>Tradeoffs</subject><subject>Upper bounds</subject><issn>1942-3454</issn><issn>1942-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAURoMoOFbxCYTudFPNzd9tljqoIwzoYlyHNLnVSqcdk47g26vM4Oo7i4-zOIydA78GUPpGaIMG4YDNwCpRSWXE4T9rdcxOcv7g3Bgp5IxdrN6pXPgUB8q5HNvyjrrhrXxJ3Zef6JQdtb7PdLbfgr0-3K_mi2r5_Pg0v11WAVBOFaAlY73ARrXRU7AoCTV4QOS-aRQBbyKnKIVVHsGY2BpdAwTdxDrWQRbsaufdpPFzS3ly6y4H6ns_0LjNDrQEDmh-xQW73F1DGnNO1LpN6tY-fTvg7i-A2weQPw3gSmE</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Ada, Anil</creator><creator>Chattopadhyay, Arkadev</creator><creator>Cook, Stephen A.</creator><creator>Fontes, Lila</creator><creator>Koucký, Michal</creator><creator>Pitassi, Toniann</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>The Hardness of Being Private</title><author>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Hardness</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Privacy</topic><topic>Tradeoffs</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ada, Anil</creatorcontrib><creatorcontrib>Chattopadhyay, Arkadev</creatorcontrib><creatorcontrib>Cook, Stephen A.</creatorcontrib><creatorcontrib>Fontes, Lila</creatorcontrib><creatorcontrib>Koucký, Michal</creatorcontrib><creatorcontrib>Pitassi, Toniann</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on computation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ada, Anil</au><au>Chattopadhyay, Arkadev</au><au>Cook, Stephen A.</au><au>Fontes, Lila</au><au>Koucký, Michal</au><au>Pitassi, Toniann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hardness of Being Private</atitle><jtitle>ACM transactions on computation theory</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1942-3454</issn><eissn>1942-3462</eissn><abstract>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of approximate privacy . Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions. Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</abstract><doi>10.1145/2567671</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1942-3454
ispartof ACM transactions on computation theory, 2014-03, Vol.6 (1), p.1-24
issn 1942-3454
1942-3462
language eng
recordid cdi_proquest_miscellaneous_1531017697
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Approximation
Asymptotic properties
Hardness
Mathematical analysis
Mathematical models
Privacy
Tradeoffs
Upper bounds
title The Hardness of Being Private
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hardness%20of%20Being%20Private&rft.jtitle=ACM%20transactions%20on%20computation%20theory&rft.au=Ada,%20Anil&rft.date=2014-03-01&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1942-3454&rft.eissn=1942-3462&rft_id=info:doi/10.1145/2567671&rft_dat=%3Cproquest_cross%3E1531017697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531017697&rft_id=info:pmid/&rfr_iscdi=true