Loading…
The Hardness of Being Private
Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy f...
Saved in:
Published in: | ACM transactions on computation theory 2014-03, Vol.6 (1), p.1-24 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on computation theory |
container_volume | 6 |
creator | Ada, Anil Chattopadhyay, Arkadev Cook, Stephen A. Fontes, Lila Koucký, Michal Pitassi, Toniann |
description | Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of
approximate privacy
. Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions.
Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a]. |
doi_str_mv | 10.1145/2567671 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531017697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</originalsourceid><addsrcrecordid>eNo9kM1KxDAURoMoOFbxCYTudFPNzd9tljqoIwzoYlyHNLnVSqcdk47g26vM4Oo7i4-zOIydA78GUPpGaIMG4YDNwCpRSWXE4T9rdcxOcv7g3Bgp5IxdrN6pXPgUB8q5HNvyjrrhrXxJ3Zef6JQdtb7PdLbfgr0-3K_mi2r5_Pg0v11WAVBOFaAlY73ARrXRU7AoCTV4QOS-aRQBbyKnKIVVHsGY2BpdAwTdxDrWQRbsaufdpPFzS3ly6y4H6ns_0LjNDrQEDmh-xQW73F1DGnNO1LpN6tY-fTvg7i-A2weQPw3gSmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531017697</pqid></control><display><type>article</type><title>The Hardness of Being Private</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</creator><creatorcontrib>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</creatorcontrib><description>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of
approximate privacy
. Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions.
Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</description><identifier>ISSN: 1942-3454</identifier><identifier>EISSN: 1942-3462</identifier><identifier>DOI: 10.1145/2567671</identifier><language>eng</language><subject>Approximation ; Asymptotic properties ; Hardness ; Mathematical analysis ; Mathematical models ; Privacy ; Tradeoffs ; Upper bounds</subject><ispartof>ACM transactions on computation theory, 2014-03, Vol.6 (1), p.1-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</citedby><cites>FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ada, Anil</creatorcontrib><creatorcontrib>Chattopadhyay, Arkadev</creatorcontrib><creatorcontrib>Cook, Stephen A.</creatorcontrib><creatorcontrib>Fontes, Lila</creatorcontrib><creatorcontrib>Koucký, Michal</creatorcontrib><creatorcontrib>Pitassi, Toniann</creatorcontrib><title>The Hardness of Being Private</title><title>ACM transactions on computation theory</title><description>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of
approximate privacy
. Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions.
Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Hardness</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Privacy</subject><subject>Tradeoffs</subject><subject>Upper bounds</subject><issn>1942-3454</issn><issn>1942-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAURoMoOFbxCYTudFPNzd9tljqoIwzoYlyHNLnVSqcdk47g26vM4Oo7i4-zOIydA78GUPpGaIMG4YDNwCpRSWXE4T9rdcxOcv7g3Bgp5IxdrN6pXPgUB8q5HNvyjrrhrXxJ3Zef6JQdtb7PdLbfgr0-3K_mi2r5_Pg0v11WAVBOFaAlY73ARrXRU7AoCTV4QOS-aRQBbyKnKIVVHsGY2BpdAwTdxDrWQRbsaufdpPFzS3ly6y4H6ns_0LjNDrQEDmh-xQW73F1DGnNO1LpN6tY-fTvg7i-A2weQPw3gSmE</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Ada, Anil</creator><creator>Chattopadhyay, Arkadev</creator><creator>Cook, Stephen A.</creator><creator>Fontes, Lila</creator><creator>Koucký, Michal</creator><creator>Pitassi, Toniann</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>The Hardness of Being Private</title><author>Ada, Anil ; Chattopadhyay, Arkadev ; Cook, Stephen A. ; Fontes, Lila ; Koucký, Michal ; Pitassi, Toniann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Hardness</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Privacy</topic><topic>Tradeoffs</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ada, Anil</creatorcontrib><creatorcontrib>Chattopadhyay, Arkadev</creatorcontrib><creatorcontrib>Cook, Stephen A.</creatorcontrib><creatorcontrib>Fontes, Lila</creatorcontrib><creatorcontrib>Koucký, Michal</creatorcontrib><creatorcontrib>Pitassi, Toniann</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on computation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ada, Anil</au><au>Chattopadhyay, Arkadev</au><au>Cook, Stephen A.</au><au>Fontes, Lila</au><au>Koucký, Michal</au><au>Pitassi, Toniann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hardness of Being Private</atitle><jtitle>ACM transactions on computation theory</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1942-3454</issn><eissn>1942-3462</eissn><abstract>Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of
approximate privacy
. Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions.
Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].</abstract><doi>10.1145/2567671</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-3454 |
ispartof | ACM transactions on computation theory, 2014-03, Vol.6 (1), p.1-24 |
issn | 1942-3454 1942-3462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531017697 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Approximation Asymptotic properties Hardness Mathematical analysis Mathematical models Privacy Tradeoffs Upper bounds |
title | The Hardness of Being Private |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hardness%20of%20Being%20Private&rft.jtitle=ACM%20transactions%20on%20computation%20theory&rft.au=Ada,%20Anil&rft.date=2014-03-01&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1942-3454&rft.eissn=1942-3462&rft_id=info:doi/10.1145/2567671&rft_dat=%3Cproquest_cross%3E1531017697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-179e69a27b4fdaec973e751a1770abb4e10bd0ed3294a7166df65811c5bd8d8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531017697&rft_id=info:pmid/&rfr_iscdi=true |