Loading…
Low-velocity impact behavior of CNF-filled glass-reinforced polyester composites
A significant improvement in fiber-reinforced polymeric composite materials can be obtained by incorporating a very small amount of nanofillers in the matrix material. In this study, an ultrasonic liquid processor was used to infuse carbon nanofibers into the polyester matrix which was then mixed wi...
Saved in:
Published in: | Journal of composite materials 2014-03, Vol.48 (7), p.879-896 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A significant improvement in fiber-reinforced polymeric composite materials can be obtained by incorporating a very small amount of nanofillers in the matrix material. In this study, an ultrasonic liquid processor was used to infuse carbon nanofibers into the polyester matrix which was then mixed with a catalyst using a mechanical agitator. Both conventional and carbon nanofibers-filled glass fiber-reinforced polyester composites were fabricated using the vacuum-assisted resin transfer molding process. Low-velocity impact tests was performed at 10 J, 20 J, and 30 J energy levels on conventional as well as 0.1–0.3 wt% carbon nanofibers-filled glass fiber-reinforced polyester composites using Dynatup8210. The morphology of fractured specimens was examined using digital photographs and optical microscopy. There was an increase in the peak load for the nanophased glass fiber-reinforced polyester composites compared with the conventional one. The absorbed energy of nanophased glass fiber-reinforced polyester composites was less than that of conventional one at different energy levels. The extent of damage was more pronounced in the conventional glass fiber-reinforced polyester composites compared to nanophased ones. Failure mechanisms comprised of indentation, debonding, delamination, matrix cracking, and fiber fracture. The extent of damage was pronounced in conventional composite compared to nanophased ones. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998313480194 |