Loading…
On the independence of hydrogen production from methanogenic suppressor in olive mill wastewater
Anaerobic degradation of olive mill wastewater (OMW) at concentrations ranging from 2 to 100 g/L of chemical oxygen demand (COD) was assessed in batch assays. Methane was the main final product obtained for the lower concentrations tested. For 25 g COD/L, H sub(2) was temporarily produced, albeit H...
Saved in:
Published in: | International journal of hydrogen energy 2014-04, Vol.39 (12), p.6402-6406 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anaerobic degradation of olive mill wastewater (OMW) at concentrations ranging from 2 to 100 g/L of chemical oxygen demand (COD) was assessed in batch assays. Methane was the main final product obtained for the lower concentrations tested. For 25 g COD/L, H sub(2) was temporarily produced, albeit H sub(2) depletion occurred, likely due to homoacetogenesis, since acetate was formed concomitantly. Hydrogen was produced and accumulated permanently in the assays containing 50 g COD/L of OMW. Methanogenesis and homoacetogenesis were naturally inhibited, suggesting that hydrogen recovery from OMW can be performed without the addition of methanogenic suppressors such as 2-bromoethanosulfonate. This fact opens new perspectives for the utilization of high OMW concentrations in a two-stage valorisation process combining biohydrogen and biomethane production. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2014.02.056 |