Loading…
Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans
The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenor...
Saved in:
Published in: | Environmental and molecular mutagenesis 2014-03, Vol.55 (2), p.122-133 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403 |
---|---|
cites | cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403 |
container_end_page | 133 |
container_issue | 2 |
container_start_page | 122 |
container_title | Environmental and molecular mutagenesis |
container_volume | 55 |
creator | Chatterjee, Nivedita Eom, Hyun Jeong Choi, Jinhee |
description | The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/em.21844 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534808675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534808675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</originalsourceid><addsrcrecordid>eNp10d2KEzEUwPFBFLeugk8gB7zxZtZMJvPlXenWrtpdFSqCN-E0c6bN7kxmTDL78Wo-nantriB4FQg__ufAiaKXCTtJGONvqTvhSSnEo2iSsKqMOS_Z42jCyiqN87ziR9Ez5y4ZSxJR8afRERepKJgoJtGvedOQ8g76Bpxur8mCQdMPaL1WLYV_A_2trtHra4LTiynU2OGGYksDagvoAKEZjfJ6JxsY0hLOp18-gfPoR_cOpqD6LvT2BRwG26Pawui02cB27NDAx9FeoYcVKGrbEDQ1-C2BoQ59XxPMkExvt7iutdcOqKUNGvc8etJg6-jF4T2Ovr2fr2Zn8fLz4sNsuoyV4EzEYs0S5FWFhWqEKPKcShSCi7yuKypKxZoGuQpE8ZSnjGWYl1TwnKssY0Kw9Dh6s--GzX-O5LzstNttiob60ckkS0XJyrzIAn39D73sR2vCdkFxXoTxPP8bVLZ3zlIjB6s7tHcyYXJ3T0md_HPPQF8dguO6o_oB3h8wgHgPbnRLd_8Nyfn5ffDgtfN0--DRXsm8SItMfr9YSPF1Ua6Wy5X8kf4GQfC4MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522747626</pqid></control><display><type>article</type><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</creator><creatorcontrib>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</creatorcontrib><description>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/em.21844</identifier><identifier>PMID: 24347047</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>8-oxo-GTPases ; 8OHdG ; Animals ; Anti-Infective Agents - toxicity ; Caenorhabditis elegans ; Caenorhabditis elegans - enzymology ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; Cell Survival ; Deoxyribonuclease (Pyrimidine Dimer) - genetics ; Deoxyribonuclease (Pyrimidine Dimer) - metabolism ; DNA Damage ; DNA glycosylases ; DNA Glycosylases - metabolism ; DNA Repair ; DNA Repair Enzymes - metabolism ; Gene Expression ; Humans ; Jurkat Cells ; Metal Nanoparticles - toxicity ; Mitogen-Activated Protein Kinases - physiology ; Nematoda ; Oxidation-Reduction ; Oxidative Stress - genetics ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - physiology ; Phosphoric Monoester Hydrolases - metabolism ; PMK-1 ; Silver - toxicity ; silver nanoparticles</subject><ispartof>Environmental and molecular mutagenesis, 2014-03, Vol.55 (2), p.122-133</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</citedby><cites>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24347047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Nivedita</creatorcontrib><creatorcontrib>Eom, Hyun Jeong</creatorcontrib><creatorcontrib>Choi, Jinhee</creatorcontrib><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>8-oxo-GTPases</subject><subject>8OHdG</subject><subject>Animals</subject><subject>Anti-Infective Agents - toxicity</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - enzymology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>Cell Survival</subject><subject>Deoxyribonuclease (Pyrimidine Dimer) - genetics</subject><subject>Deoxyribonuclease (Pyrimidine Dimer) - metabolism</subject><subject>DNA Damage</subject><subject>DNA glycosylases</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Jurkat Cells</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>Nematoda</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - genetics</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - physiology</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>PMK-1</subject><subject>Silver - toxicity</subject><subject>silver nanoparticles</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10d2KEzEUwPFBFLeugk8gB7zxZtZMJvPlXenWrtpdFSqCN-E0c6bN7kxmTDL78Wo-nantriB4FQg__ufAiaKXCTtJGONvqTvhSSnEo2iSsKqMOS_Z42jCyiqN87ziR9Ez5y4ZSxJR8afRERepKJgoJtGvedOQ8g76Bpxur8mCQdMPaL1WLYV_A_2trtHra4LTiynU2OGGYksDagvoAKEZjfJ6JxsY0hLOp18-gfPoR_cOpqD6LvT2BRwG26Pawui02cB27NDAx9FeoYcVKGrbEDQ1-C2BoQ59XxPMkExvt7iutdcOqKUNGvc8etJg6-jF4T2Ovr2fr2Zn8fLz4sNsuoyV4EzEYs0S5FWFhWqEKPKcShSCi7yuKypKxZoGuQpE8ZSnjGWYl1TwnKssY0Kw9Dh6s--GzX-O5LzstNttiob60ckkS0XJyrzIAn39D73sR2vCdkFxXoTxPP8bVLZ3zlIjB6s7tHcyYXJ3T0md_HPPQF8dguO6o_oB3h8wgHgPbnRLd_8Nyfn5ffDgtfN0--DRXsm8SItMfr9YSPF1Ua6Wy5X8kf4GQfC4MQ</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Chatterjee, Nivedita</creator><creator>Eom, Hyun Jeong</creator><creator>Choi, Jinhee</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>201403</creationdate><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><author>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>8-oxo-GTPases</topic><topic>8OHdG</topic><topic>Animals</topic><topic>Anti-Infective Agents - toxicity</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - enzymology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>Cell Survival</topic><topic>Deoxyribonuclease (Pyrimidine Dimer) - genetics</topic><topic>Deoxyribonuclease (Pyrimidine Dimer) - metabolism</topic><topic>DNA Damage</topic><topic>DNA glycosylases</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Jurkat Cells</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>Nematoda</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - genetics</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - physiology</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>PMK-1</topic><topic>Silver - toxicity</topic><topic>silver nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Nivedita</creatorcontrib><creatorcontrib>Eom, Hyun Jeong</creatorcontrib><creatorcontrib>Choi, Jinhee</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Nivedita</au><au>Eom, Hyun Jeong</au><au>Choi, Jinhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>2014-03</date><risdate>2014</risdate><volume>55</volume><issue>2</issue><spage>122</spage><epage>133</epage><pages>122-133</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><abstract>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24347047</pmid><doi>10.1002/em.21844</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6692 |
ispartof | Environmental and molecular mutagenesis, 2014-03, Vol.55 (2), p.122-133 |
issn | 0893-6692 1098-2280 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534808675 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 8-oxo-GTPases 8OHdG Animals Anti-Infective Agents - toxicity Caenorhabditis elegans Caenorhabditis elegans - enzymology Caenorhabditis elegans Proteins - metabolism Caenorhabditis elegans Proteins - physiology Cell Survival Deoxyribonuclease (Pyrimidine Dimer) - genetics Deoxyribonuclease (Pyrimidine Dimer) - metabolism DNA Damage DNA glycosylases DNA Glycosylases - metabolism DNA Repair DNA Repair Enzymes - metabolism Gene Expression Humans Jurkat Cells Metal Nanoparticles - toxicity Mitogen-Activated Protein Kinases - physiology Nematoda Oxidation-Reduction Oxidative Stress - genetics p38 MAPK p38 Mitogen-Activated Protein Kinases - physiology Phosphoric Monoester Hydrolases - metabolism PMK-1 Silver - toxicity silver nanoparticles |
title | Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20silver%20nanoparticles%20on%20oxidative%20DNA%20damage-repair%20as%20a%20function%20of%20p38%20MAPK%20status:%20A%20comparative%20approach%20using%20human%20Jurkat%20T%20cells%20and%20the%20nematode%20Caenorhabditis%20elegans&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Chatterjee,%20Nivedita&rft.date=2014-03&rft.volume=55&rft.issue=2&rft.spage=122&rft.epage=133&rft.pages=122-133&rft.issn=0893-6692&rft.eissn=1098-2280&rft_id=info:doi/10.1002/em.21844&rft_dat=%3Cproquest_cross%3E1534808675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1522747626&rft_id=info:pmid/24347047&rfr_iscdi=true |