Loading…

Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans

The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenor...

Full description

Saved in:
Bibliographic Details
Published in:Environmental and molecular mutagenesis 2014-03, Vol.55 (2), p.122-133
Main Authors: Chatterjee, Nivedita, Eom, Hyun Jeong, Choi, Jinhee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403
cites cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403
container_end_page 133
container_issue 2
container_start_page 122
container_title Environmental and molecular mutagenesis
container_volume 55
creator Chatterjee, Nivedita
Eom, Hyun Jeong
Choi, Jinhee
description The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/em.21844
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534808675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534808675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</originalsourceid><addsrcrecordid>eNp10d2KEzEUwPFBFLeugk8gB7zxZtZMJvPlXenWrtpdFSqCN-E0c6bN7kxmTDL78Wo-nantriB4FQg__ufAiaKXCTtJGONvqTvhSSnEo2iSsKqMOS_Z42jCyiqN87ziR9Ez5y4ZSxJR8afRERepKJgoJtGvedOQ8g76Bpxur8mCQdMPaL1WLYV_A_2trtHra4LTiynU2OGGYksDagvoAKEZjfJ6JxsY0hLOp18-gfPoR_cOpqD6LvT2BRwG26Pawui02cB27NDAx9FeoYcVKGrbEDQ1-C2BoQ59XxPMkExvt7iutdcOqKUNGvc8etJg6-jF4T2Ovr2fr2Zn8fLz4sNsuoyV4EzEYs0S5FWFhWqEKPKcShSCi7yuKypKxZoGuQpE8ZSnjGWYl1TwnKssY0Kw9Dh6s--GzX-O5LzstNttiob60ckkS0XJyrzIAn39D73sR2vCdkFxXoTxPP8bVLZ3zlIjB6s7tHcyYXJ3T0md_HPPQF8dguO6o_oB3h8wgHgPbnRLd_8Nyfn5ffDgtfN0--DRXsm8SItMfr9YSPF1Ua6Wy5X8kf4GQfC4MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522747626</pqid></control><display><type>article</type><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</creator><creatorcontrib>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</creatorcontrib><description>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/em.21844</identifier><identifier>PMID: 24347047</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>8-oxo-GTPases ; 8OHdG ; Animals ; Anti-Infective Agents - toxicity ; Caenorhabditis elegans ; Caenorhabditis elegans - enzymology ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; Cell Survival ; Deoxyribonuclease (Pyrimidine Dimer) - genetics ; Deoxyribonuclease (Pyrimidine Dimer) - metabolism ; DNA Damage ; DNA glycosylases ; DNA Glycosylases - metabolism ; DNA Repair ; DNA Repair Enzymes - metabolism ; Gene Expression ; Humans ; Jurkat Cells ; Metal Nanoparticles - toxicity ; Mitogen-Activated Protein Kinases - physiology ; Nematoda ; Oxidation-Reduction ; Oxidative Stress - genetics ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - physiology ; Phosphoric Monoester Hydrolases - metabolism ; PMK-1 ; Silver - toxicity ; silver nanoparticles</subject><ispartof>Environmental and molecular mutagenesis, 2014-03, Vol.55 (2), p.122-133</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</citedby><cites>FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24347047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Nivedita</creatorcontrib><creatorcontrib>Eom, Hyun Jeong</creatorcontrib><creatorcontrib>Choi, Jinhee</creatorcontrib><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>8-oxo-GTPases</subject><subject>8OHdG</subject><subject>Animals</subject><subject>Anti-Infective Agents - toxicity</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - enzymology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>Cell Survival</subject><subject>Deoxyribonuclease (Pyrimidine Dimer) - genetics</subject><subject>Deoxyribonuclease (Pyrimidine Dimer) - metabolism</subject><subject>DNA Damage</subject><subject>DNA glycosylases</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Jurkat Cells</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>Nematoda</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - genetics</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - physiology</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>PMK-1</subject><subject>Silver - toxicity</subject><subject>silver nanoparticles</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10d2KEzEUwPFBFLeugk8gB7zxZtZMJvPlXenWrtpdFSqCN-E0c6bN7kxmTDL78Wo-nantriB4FQg__ufAiaKXCTtJGONvqTvhSSnEo2iSsKqMOS_Z42jCyiqN87ziR9Ez5y4ZSxJR8afRERepKJgoJtGvedOQ8g76Bpxur8mCQdMPaL1WLYV_A_2trtHra4LTiynU2OGGYksDagvoAKEZjfJ6JxsY0hLOp18-gfPoR_cOpqD6LvT2BRwG26Pawui02cB27NDAx9FeoYcVKGrbEDQ1-C2BoQ59XxPMkExvt7iutdcOqKUNGvc8etJg6-jF4T2Ovr2fr2Zn8fLz4sNsuoyV4EzEYs0S5FWFhWqEKPKcShSCi7yuKypKxZoGuQpE8ZSnjGWYl1TwnKssY0Kw9Dh6s--GzX-O5LzstNttiob60ckkS0XJyrzIAn39D73sR2vCdkFxXoTxPP8bVLZ3zlIjB6s7tHcyYXJ3T0md_HPPQF8dguO6o_oB3h8wgHgPbnRLd_8Nyfn5ffDgtfN0--DRXsm8SItMfr9YSPF1Ua6Wy5X8kf4GQfC4MQ</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Chatterjee, Nivedita</creator><creator>Eom, Hyun Jeong</creator><creator>Choi, Jinhee</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>201403</creationdate><title>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</title><author>Chatterjee, Nivedita ; Eom, Hyun Jeong ; Choi, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>8-oxo-GTPases</topic><topic>8OHdG</topic><topic>Animals</topic><topic>Anti-Infective Agents - toxicity</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - enzymology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>Cell Survival</topic><topic>Deoxyribonuclease (Pyrimidine Dimer) - genetics</topic><topic>Deoxyribonuclease (Pyrimidine Dimer) - metabolism</topic><topic>DNA Damage</topic><topic>DNA glycosylases</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Jurkat Cells</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>Nematoda</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - genetics</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - physiology</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>PMK-1</topic><topic>Silver - toxicity</topic><topic>silver nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Nivedita</creatorcontrib><creatorcontrib>Eom, Hyun Jeong</creatorcontrib><creatorcontrib>Choi, Jinhee</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Nivedita</au><au>Eom, Hyun Jeong</au><au>Choi, Jinhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>2014-03</date><risdate>2014</risdate><volume>55</volume><issue>2</issue><spage>122</spage><epage>133</epage><pages>122-133</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><abstract>The large‐scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK‐1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage–repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH‐1, and 8‐oxo‐GTPases—hMTH1, NDX‐4) and explore the role of p38 MAPK and PMK‐1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock‐down (KD) Jurkat T cells (in vitro) and in WT and pmk‐1 loss‐of‐function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK‐1 plays protective role against AgNP‐mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP‐treated KD cells, and in pmk‐1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose‐dependent alterations in hOGG1, hMTH1, and NDX‐4 expression and enzyme activity, and survival in ndx‐4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK‐1 caused impaired and additive effects in AgNP‐induced ndx‐4(ok1003); pmk‐1(RNAi) mutant survival, and hOGG1 and NDX‐4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK‐1 plays an important protective role in AgNP‐induced oxidative DNA damage–repair which is conserved from C. elegans to humans. Environ. Mol. Mutagen. 55:122–133, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24347047</pmid><doi>10.1002/em.21844</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6692
ispartof Environmental and molecular mutagenesis, 2014-03, Vol.55 (2), p.122-133
issn 0893-6692
1098-2280
language eng
recordid cdi_proquest_miscellaneous_1534808675
source Wiley-Blackwell Read & Publish Collection
subjects 8-oxo-GTPases
8OHdG
Animals
Anti-Infective Agents - toxicity
Caenorhabditis elegans
Caenorhabditis elegans - enzymology
Caenorhabditis elegans Proteins - metabolism
Caenorhabditis elegans Proteins - physiology
Cell Survival
Deoxyribonuclease (Pyrimidine Dimer) - genetics
Deoxyribonuclease (Pyrimidine Dimer) - metabolism
DNA Damage
DNA glycosylases
DNA Glycosylases - metabolism
DNA Repair
DNA Repair Enzymes - metabolism
Gene Expression
Humans
Jurkat Cells
Metal Nanoparticles - toxicity
Mitogen-Activated Protein Kinases - physiology
Nematoda
Oxidation-Reduction
Oxidative Stress - genetics
p38 MAPK
p38 Mitogen-Activated Protein Kinases - physiology
Phosphoric Monoester Hydrolases - metabolism
PMK-1
Silver - toxicity
silver nanoparticles
title Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20silver%20nanoparticles%20on%20oxidative%20DNA%20damage-repair%20as%20a%20function%20of%20p38%20MAPK%20status:%20A%20comparative%20approach%20using%20human%20Jurkat%20T%20cells%20and%20the%20nematode%20Caenorhabditis%20elegans&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Chatterjee,%20Nivedita&rft.date=2014-03&rft.volume=55&rft.issue=2&rft.spage=122&rft.epage=133&rft.pages=122-133&rft.issn=0893-6692&rft.eissn=1098-2280&rft_id=info:doi/10.1002/em.21844&rft_dat=%3Cproquest_cross%3E1534808675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4204-4b01a299a7cf44766e8a44246dd9e78c0ffa2c1a2c2323005a68e7262c5504403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1522747626&rft_id=info:pmid/24347047&rfr_iscdi=true