Loading…

Altering Colloidal Surface Functionalization Using DNA Encapsulated Inside Monodisperse Gelatin Microsphere Templates

Soluble oligonucleotides are typically introduced to bulk solution to promote hybridization activity on DNA-functionalized surfaces. Here, an alternative approach is explored by encapsulating secondary target strands inside semipermeable colloidal satellite assemblies, then triggering their release...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2013-05, Vol.29 (18), p.5534-5539
Main Authors: Hardin, James O, Fernandez-Nieves, Alberto, Martinez, Carlos J, Milam, Valeria T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soluble oligonucleotides are typically introduced to bulk solution to promote hybridization activity on DNA-functionalized surfaces. Here, an alternative approach is explored by encapsulating secondary target strands inside semipermeable colloidal satellite assemblies, then triggering their release at 37 °C for subsequent surface hybridization activity. To prepare DNA-loaded satellite assemblies, uniform gelatin microspheres are fabricated using microfluidics, loaded with 15 base-long secondary DNA targets, capped with a polyelectrolyte bilayer, and finally coated with a monolayer of polystyrene microspheres functionalized with duplexes comprised of immobilized probes and soluble, 13 base-long hybridization partner strands. Once warmed to 37 °C, secondary DNA targets are released from the gelatin template and then competitively displace the shorter, original hybridization partners on the polystyrene microspheres.
ISSN:0743-7463
1520-5827
DOI:10.1021/la400280x