Loading…

Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential

The traditional likelihood‐based approach to hypothesis testing may not be an optimal strategy for evaluating oligogenic models of inheritance. Under oligogenic inheritance the number of possible multilocus models can become very large; there may be several competing linkage models having similar li...

Full description

Saved in:
Bibliographic Details
Published in:Genetic epidemiology 1999, Vol.17 (S1), p.S67-S72
Main Authors: Blangero, John, Williams, Jeff T., Iturria, Stephen J., Almasy, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3
cites cdi_FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3
container_end_page S72
container_issue S1
container_start_page S67
container_title Genetic epidemiology
container_volume 17
creator Blangero, John
Williams, Jeff T.
Iturria, Stephen J.
Almasy, Laura
description The traditional likelihood‐based approach to hypothesis testing may not be an optimal strategy for evaluating oligogenic models of inheritance. Under oligogenic inheritance the number of possible multilocus models can become very large; there may be several competing linkage models having similar likelihoods; and comparisons among non‐nested models can be required to determine if a given multilocus model provides a significantly better fit to observed phenotypic variation than an alternative model. We propose an efficient Bayesian approach to oligogenic model selection that makes use of existing model likelihoods, and show how model uncertainty can be incorporated into parameter estimation.
doi_str_mv 10.1002/gepi.1370170712
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534833194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534833194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRi0EokvhzA35yCWtJ7bXCZzQqmwrrWglQCAuluNMgqljb-0ssBz55aRN1cKJ04xm3vcdHiHPgR0BY-Vxj1t3BFwxUExB-YAsgNVVUZaqfEgWTAkoGK_lAXmS8zfGAEQtH5MDYLKefmJBfp9718ceg7N0iC16mtGjHV0MdJdd6On4FWlj9pidCdSFLqbB3LxtciOmaXtFNy5cmh6pCcbvs8s0dje5C84YXf2i-B3DWCT0ZsSWNsm4QLdxnI7O-KfkUWd8xme385B8fHvyYXVabM7XZ6s3m8IKqcrCKKkU8mapWl5JBhaE4oo3tgHbtWrZCSlqXlVlyZolr01r0NYNN8YK4IgdPyQv595tilc7zKMeXLbovQkYd1mD5KLiHGoxocczalPMOWGnt8kNJu01MH0tXl-L1_fip8SL2_JdM2D7Fz-bnoDXM_DDedz_r0-vTy7O_qkv5rTLI_68S5t0qZeTBak_vVvr9Rd4v6lOQX_mfwCtDKDr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534833194</pqid></control><display><type>article</type><title>Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential</title><source>Wiley</source><creator>Blangero, John ; Williams, Jeff T. ; Iturria, Stephen J. ; Almasy, Laura</creator><creatorcontrib>Blangero, John ; Williams, Jeff T. ; Iturria, Stephen J. ; Almasy, Laura</creatorcontrib><description>The traditional likelihood‐based approach to hypothesis testing may not be an optimal strategy for evaluating oligogenic models of inheritance. Under oligogenic inheritance the number of possible multilocus models can become very large; there may be several competing linkage models having similar likelihoods; and comparisons among non‐nested models can be required to determine if a given multilocus model provides a significantly better fit to observed phenotypic variation than an alternative model. We propose an efficient Bayesian approach to oligogenic model selection that makes use of existing model likelihoods, and show how model uncertainty can be incorporated into parameter estimation.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.1370170712</identifier><identifier>PMID: 10597414</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alcoholism - genetics ; Bayes factor ; Bayes Theorem ; Event-Related Potentials, P300 - genetics ; Genetic Linkage ; Genetic Testing ; Humans ; hypothesis testing ; likelihood ; Models, Genetic ; Models, Statistical ; Quantitative Trait, Heritable ; statistical genetics</subject><ispartof>Genetic epidemiology, 1999, Vol.17 (S1), p.S67-S72</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3</citedby><cites>FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10597414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Williams, Jeff T.</creatorcontrib><creatorcontrib>Iturria, Stephen J.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><title>Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>The traditional likelihood‐based approach to hypothesis testing may not be an optimal strategy for evaluating oligogenic models of inheritance. Under oligogenic inheritance the number of possible multilocus models can become very large; there may be several competing linkage models having similar likelihoods; and comparisons among non‐nested models can be required to determine if a given multilocus model provides a significantly better fit to observed phenotypic variation than an alternative model. We propose an efficient Bayesian approach to oligogenic model selection that makes use of existing model likelihoods, and show how model uncertainty can be incorporated into parameter estimation.</description><subject>Alcoholism - genetics</subject><subject>Bayes factor</subject><subject>Bayes Theorem</subject><subject>Event-Related Potentials, P300 - genetics</subject><subject>Genetic Linkage</subject><subject>Genetic Testing</subject><subject>Humans</subject><subject>hypothesis testing</subject><subject>likelihood</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Quantitative Trait, Heritable</subject><subject>statistical genetics</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQRi0EokvhzA35yCWtJ7bXCZzQqmwrrWglQCAuluNMgqljb-0ssBz55aRN1cKJ04xm3vcdHiHPgR0BY-Vxj1t3BFwxUExB-YAsgNVVUZaqfEgWTAkoGK_lAXmS8zfGAEQtH5MDYLKefmJBfp9718ceg7N0iC16mtGjHV0MdJdd6On4FWlj9pidCdSFLqbB3LxtciOmaXtFNy5cmh6pCcbvs8s0dje5C84YXf2i-B3DWCT0ZsSWNsm4QLdxnI7O-KfkUWd8xme385B8fHvyYXVabM7XZ6s3m8IKqcrCKKkU8mapWl5JBhaE4oo3tgHbtWrZCSlqXlVlyZolr01r0NYNN8YK4IgdPyQv595tilc7zKMeXLbovQkYd1mD5KLiHGoxocczalPMOWGnt8kNJu01MH0tXl-L1_fip8SL2_JdM2D7Fz-bnoDXM_DDedz_r0-vTy7O_qkv5rTLI_68S5t0qZeTBak_vVvr9Rd4v6lOQX_mfwCtDKDr</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Blangero, John</creator><creator>Williams, Jeff T.</creator><creator>Iturria, Stephen J.</creator><creator>Almasy, Laura</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>1999</creationdate><title>Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential</title><author>Blangero, John ; Williams, Jeff T. ; Iturria, Stephen J. ; Almasy, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alcoholism - genetics</topic><topic>Bayes factor</topic><topic>Bayes Theorem</topic><topic>Event-Related Potentials, P300 - genetics</topic><topic>Genetic Linkage</topic><topic>Genetic Testing</topic><topic>Humans</topic><topic>hypothesis testing</topic><topic>likelihood</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Quantitative Trait, Heritable</topic><topic>statistical genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Williams, Jeff T.</creatorcontrib><creatorcontrib>Iturria, Stephen J.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blangero, John</au><au>Williams, Jeff T.</au><au>Iturria, Stephen J.</au><au>Almasy, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>1999</date><risdate>1999</risdate><volume>17</volume><issue>S1</issue><spage>S67</spage><epage>S72</epage><pages>S67-S72</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>The traditional likelihood‐based approach to hypothesis testing may not be an optimal strategy for evaluating oligogenic models of inheritance. Under oligogenic inheritance the number of possible multilocus models can become very large; there may be several competing linkage models having similar likelihoods; and comparisons among non‐nested models can be required to determine if a given multilocus model provides a significantly better fit to observed phenotypic variation than an alternative model. We propose an efficient Bayesian approach to oligogenic model selection that makes use of existing model likelihoods, and show how model uncertainty can be incorporated into parameter estimation.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>10597414</pmid><doi>10.1002/gepi.1370170712</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 1999, Vol.17 (S1), p.S67-S72
issn 0741-0395
1098-2272
language eng
recordid cdi_proquest_miscellaneous_1534833194
source Wiley
subjects Alcoholism - genetics
Bayes factor
Bayes Theorem
Event-Related Potentials, P300 - genetics
Genetic Linkage
Genetic Testing
Humans
hypothesis testing
likelihood
Models, Genetic
Models, Statistical
Quantitative Trait, Heritable
statistical genetics
title Oligogenic model selection using the bayesian information criterion: Linkage analysis of the P300 Cz event-related brain potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligogenic%20model%20selection%20using%20the%20bayesian%20information%20criterion:%20Linkage%20analysis%20of%20the%20P300%20Cz%20event-related%20brain%20potential&rft.jtitle=Genetic%20epidemiology&rft.au=Blangero,%20John&rft.date=1999&rft.volume=17&rft.issue=S1&rft.spage=S67&rft.epage=S72&rft.pages=S67-S72&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.1370170712&rft_dat=%3Cproquest_cross%3E1534833194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4572-a7577e3b67d38501c147373bcb1cfd76f4549388220b639adaec9b3aac413eef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1534833194&rft_id=info:pmid/10597414&rfr_iscdi=true