Loading…
Characterization of biochemical properties of a selenium-independent glutathione peroxidase of Cryptosporidium parvum
Glutathione peroxidase (GPx; EC 1.11.1.9) is an important antioxidant enzyme that catalyses the reduction of organic and inorganic hydroperoxides to water in oxygen-consuming organisms, using glutathione as an electron donor. Here, we report the characterization of a GPx of Cryptosporidium parvum (C...
Saved in:
Published in: | Parasitology 2014-04, Vol.141 (4), p.570-578 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glutathione peroxidase (GPx; EC 1.11.1.9) is an important antioxidant enzyme that catalyses the reduction of organic and inorganic hydroperoxides to water in oxygen-consuming organisms, using glutathione as an electron donor. Here, we report the characterization of a GPx of Cryptosporidium parvum (CpGPx). CpGPx contained a standard UGU codon for cysteine instead of a UGA opal codon for seleno-cysteine (SeCys) at the active site, and no SeCys insertion sequence (SECIS) motif was identified within the 3′-untranslated region (UTR) of CpGPx, which suggested its selenium-independent nature. In silico and biochemical analyses indicated that CpGPx is a cytosolic protein with a monomeric structure. Recombinant CpGPx was active over a wide pH range and was stable under physiological conditions. It showed a substrate preference against organic hydroperoxides, such as cumene hydroperoxide and t-butyl hydroperoxide, but it also showed activity against inorganic hydroperoxide, hydrogen peroxide. Recombinant CpGPx was not inhibited by potassium cyanide or by sodium azide. The enzyme effectively protected DNA and protein from oxidative damage induced by hydrogen peroxide, and was functionally expressed in various developmental stages of C. parvum. These results collectively suggest the essential role of CpGPx for the parasite's antioxidant defence system. |
---|---|
ISSN: | 0031-1820 1469-8161 |
DOI: | 10.1017/S0031182013001832 |