Loading…
Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning
Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffoldin...
Saved in:
Published in: | Langmuir 2013-10, Vol.29 (42), p.13089-13094 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933 |
---|---|
cites | cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933 |
container_end_page | 13094 |
container_issue | 42 |
container_start_page | 13089 |
container_title | Langmuir |
container_volume | 29 |
creator | Geerts, Nienke Schreck, Carl F Beales, Paul A Shigematsu, Hideki O’Hern, Corey S Vanderlick, T. Kyle |
description | Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics. |
doi_str_mv | 10.1021/la403091w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534839605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534839605</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</originalsourceid><addsrcrecordid>eNqF0F1LHDEUBuAgFd2uXvgHSm4KejE1XzPJXC5arbCsgvV6eiYfOkt2Mk1mK_33zbLrelOQhCSEh3MOL0JnlHyjhNFLD4JwUtPXAzShJSNFqZj8hCZECl5IUfFj9DmlJSGk5qI-QsdMEMklUxP06yl1_TO-XsyK69j9sT2epWRXrbcGP7yENLwE3w2dwQvog-mSThjyxo8anAveYBcivt08NmCAOHbaW_wA42hjn0ufoEMHPtnT3T1FTzfff179KOb3t3dXs3kBXKqx4HULeWkQ1DGmeMkrRykzThhTt061WqqyosBcHttVlXamctIYmT9UW3M-RefbukMMv9c2jc0qT2u9h96GdWpoyYXidUXKj6kQgtebI9OLLdUxpBSta4bYrSD-bShpNtk3--yz_bIru25X1uzlW9gZfN0BSBq8i9DrLr07qVTJpHx3oFOzDOvY5-D-0_Af1yCXfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444394443</pqid></control><display><type>article</type><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</creator><creatorcontrib>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</creatorcontrib><description>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la403091w</identifier><identifier>PMID: 24073728</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; DNA - chemistry ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Membrane Proteins - chemistry ; Membrane Proteins - isolation & purification ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Monte Carlo Method ; Nickel - chemistry ; Particle Size ; Phospholipids - chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Surface Properties</subject><ispartof>Langmuir, 2013-10, Vol.29 (42), p.13089-13094</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</citedby><cites>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27885277$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24073728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geerts, Nienke</creatorcontrib><creatorcontrib>Schreck, Carl F</creatorcontrib><creatorcontrib>Beales, Paul A</creatorcontrib><creatorcontrib>Shigematsu, Hideki</creatorcontrib><creatorcontrib>O’Hern, Corey S</creatorcontrib><creatorcontrib>Vanderlick, T. Kyle</creatorcontrib><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>DNA - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - isolation & purification</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo Method</subject><subject>Nickel - chemistry</subject><subject>Particle Size</subject><subject>Phospholipids - chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0F1LHDEUBuAgFd2uXvgHSm4KejE1XzPJXC5arbCsgvV6eiYfOkt2Mk1mK_33zbLrelOQhCSEh3MOL0JnlHyjhNFLD4JwUtPXAzShJSNFqZj8hCZECl5IUfFj9DmlJSGk5qI-QsdMEMklUxP06yl1_TO-XsyK69j9sT2epWRXrbcGP7yENLwE3w2dwQvog-mSThjyxo8anAveYBcivt08NmCAOHbaW_wA42hjn0ufoEMHPtnT3T1FTzfff179KOb3t3dXs3kBXKqx4HULeWkQ1DGmeMkrRykzThhTt061WqqyosBcHttVlXamctIYmT9UW3M-RefbukMMv9c2jc0qT2u9h96GdWpoyYXidUXKj6kQgtebI9OLLdUxpBSta4bYrSD-bShpNtk3--yz_bIru25X1uzlW9gZfN0BSBq8i9DrLr07qVTJpHx3oFOzDOvY5-D-0_Af1yCXfQ</recordid><startdate>20131022</startdate><enddate>20131022</enddate><creator>Geerts, Nienke</creator><creator>Schreck, Carl F</creator><creator>Beales, Paul A</creator><creator>Shigematsu, Hideki</creator><creator>O’Hern, Corey S</creator><creator>Vanderlick, T. Kyle</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20131022</creationdate><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><author>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>DNA - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - isolation & purification</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo Method</topic><topic>Nickel - chemistry</topic><topic>Particle Size</topic><topic>Phospholipids - chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Nienke</creatorcontrib><creatorcontrib>Schreck, Carl F</creatorcontrib><creatorcontrib>Beales, Paul A</creatorcontrib><creatorcontrib>Shigematsu, Hideki</creatorcontrib><creatorcontrib>O’Hern, Corey S</creatorcontrib><creatorcontrib>Vanderlick, T. Kyle</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Nienke</au><au>Schreck, Carl F</au><au>Beales, Paul A</au><au>Shigematsu, Hideki</au><au>O’Hern, Corey S</au><au>Vanderlick, T. Kyle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-10-22</date><risdate>2013</risdate><volume>29</volume><issue>42</issue><spage>13089</spage><epage>13094</epage><pages>13089-13094</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24073728</pmid><doi>10.1021/la403091w</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-10, Vol.29 (42), p.13089-13094 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1534839605 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Colloidal state and disperse state DNA - chemistry Exact sciences and technology General and physical chemistry Gold - chemistry Membrane Proteins - chemistry Membrane Proteins - isolation & purification Metal Nanoparticles - chemistry Molecular Dynamics Simulation Monte Carlo Method Nickel - chemistry Particle Size Phospholipids - chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena Surface Properties |
title | Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T23%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20DNA-Driven%20Assembled%20Phospholipid%20Nanodiscs%20as%20a%20Scaffold%20for%20Gold%20Nanoparticle%20Patterning&rft.jtitle=Langmuir&rft.au=Geerts,%20Nienke&rft.date=2013-10-22&rft.volume=29&rft.issue=42&rft.spage=13089&rft.epage=13094&rft.pages=13089-13094&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la403091w&rft_dat=%3Cproquest_cross%3E1534839605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444394443&rft_id=info:pmid/24073728&rfr_iscdi=true |