Loading…

Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning

Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffoldin...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2013-10, Vol.29 (42), p.13089-13094
Main Authors: Geerts, Nienke, Schreck, Carl F, Beales, Paul A, Shigematsu, Hideki, O’Hern, Corey S, Vanderlick, T. Kyle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933
cites cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933
container_end_page 13094
container_issue 42
container_start_page 13089
container_title Langmuir
container_volume 29
creator Geerts, Nienke
Schreck, Carl F
Beales, Paul A
Shigematsu, Hideki
O’Hern, Corey S
Vanderlick, T. Kyle
description Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.
doi_str_mv 10.1021/la403091w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1534839605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534839605</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</originalsourceid><addsrcrecordid>eNqF0F1LHDEUBuAgFd2uXvgHSm4KejE1XzPJXC5arbCsgvV6eiYfOkt2Mk1mK_33zbLrelOQhCSEh3MOL0JnlHyjhNFLD4JwUtPXAzShJSNFqZj8hCZECl5IUfFj9DmlJSGk5qI-QsdMEMklUxP06yl1_TO-XsyK69j9sT2epWRXrbcGP7yENLwE3w2dwQvog-mSThjyxo8anAveYBcivt08NmCAOHbaW_wA42hjn0ufoEMHPtnT3T1FTzfff179KOb3t3dXs3kBXKqx4HULeWkQ1DGmeMkrRykzThhTt061WqqyosBcHttVlXamctIYmT9UW3M-RefbukMMv9c2jc0qT2u9h96GdWpoyYXidUXKj6kQgtebI9OLLdUxpBSta4bYrSD-bShpNtk3--yz_bIru25X1uzlW9gZfN0BSBq8i9DrLr07qVTJpHx3oFOzDOvY5-D-0_Af1yCXfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444394443</pqid></control><display><type>article</type><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</creator><creatorcontrib>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</creatorcontrib><description>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la403091w</identifier><identifier>PMID: 24073728</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; DNA - chemistry ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Membrane Proteins - chemistry ; Membrane Proteins - isolation &amp; purification ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Monte Carlo Method ; Nickel - chemistry ; Particle Size ; Phospholipids - chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Surface Properties</subject><ispartof>Langmuir, 2013-10, Vol.29 (42), p.13089-13094</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</citedby><cites>FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27885277$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24073728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geerts, Nienke</creatorcontrib><creatorcontrib>Schreck, Carl F</creatorcontrib><creatorcontrib>Beales, Paul A</creatorcontrib><creatorcontrib>Shigematsu, Hideki</creatorcontrib><creatorcontrib>O’Hern, Corey S</creatorcontrib><creatorcontrib>Vanderlick, T. Kyle</creatorcontrib><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>DNA - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - isolation &amp; purification</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo Method</subject><subject>Nickel - chemistry</subject><subject>Particle Size</subject><subject>Phospholipids - chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0F1LHDEUBuAgFd2uXvgHSm4KejE1XzPJXC5arbCsgvV6eiYfOkt2Mk1mK_33zbLrelOQhCSEh3MOL0JnlHyjhNFLD4JwUtPXAzShJSNFqZj8hCZECl5IUfFj9DmlJSGk5qI-QsdMEMklUxP06yl1_TO-XsyK69j9sT2epWRXrbcGP7yENLwE3w2dwQvog-mSThjyxo8anAveYBcivt08NmCAOHbaW_wA42hjn0ufoEMHPtnT3T1FTzfff179KOb3t3dXs3kBXKqx4HULeWkQ1DGmeMkrRykzThhTt061WqqyosBcHttVlXamctIYmT9UW3M-RefbukMMv9c2jc0qT2u9h96GdWpoyYXidUXKj6kQgtebI9OLLdUxpBSta4bYrSD-bShpNtk3--yz_bIru25X1uzlW9gZfN0BSBq8i9DrLr07qVTJpHx3oFOzDOvY5-D-0_Af1yCXfQ</recordid><startdate>20131022</startdate><enddate>20131022</enddate><creator>Geerts, Nienke</creator><creator>Schreck, Carl F</creator><creator>Beales, Paul A</creator><creator>Shigematsu, Hideki</creator><creator>O’Hern, Corey S</creator><creator>Vanderlick, T. Kyle</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20131022</creationdate><title>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</title><author>Geerts, Nienke ; Schreck, Carl F ; Beales, Paul A ; Shigematsu, Hideki ; O’Hern, Corey S ; Vanderlick, T. Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>DNA - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - isolation &amp; purification</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo Method</topic><topic>Nickel - chemistry</topic><topic>Particle Size</topic><topic>Phospholipids - chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Nienke</creatorcontrib><creatorcontrib>Schreck, Carl F</creatorcontrib><creatorcontrib>Beales, Paul A</creatorcontrib><creatorcontrib>Shigematsu, Hideki</creatorcontrib><creatorcontrib>O’Hern, Corey S</creatorcontrib><creatorcontrib>Vanderlick, T. Kyle</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Nienke</au><au>Schreck, Carl F</au><au>Beales, Paul A</au><au>Shigematsu, Hideki</au><au>O’Hern, Corey S</au><au>Vanderlick, T. Kyle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-10-22</date><risdate>2013</risdate><volume>29</volume><issue>42</issue><spage>13089</spage><epage>13094</epage><pages>13089-13094</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Recently, a new class of materials emerged with the assembly of DNA-coated phospholipid nanodiscs into columnar BioNanoStacks. Within these stacks, lipid discs are periodically incorporated, resulting into quasi-one-dimensional superstructures. With each disc surrounded by two recombinant scaffolding proteins, we decided to examine whether the polyhistidine tags of these proteins could be utilized to bind additional molecules or particles to these BioNanoStacks. Here we demonstrate that patterning of gold nanoparticles onto these BioNanoStacks is indeed possible. Binding occurs via a nickel-mediated interaction between the nanogolds nitrilotriacetic acid and the histidine tags of the scaffold proteins surrounding the nanodiscs. Using Monte Carlo simulations, we determine that the binding of the nanogold particles to the stacks is not a random event. By comparing the simulation and experimental results, we find that there are preferred binding sites, which affects the binding statistics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24073728</pmid><doi>10.1021/la403091w</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-10, Vol.29 (42), p.13089-13094
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1534839605
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Colloidal state and disperse state
DNA - chemistry
Exact sciences and technology
General and physical chemistry
Gold - chemistry
Membrane Proteins - chemistry
Membrane Proteins - isolation & purification
Metal Nanoparticles - chemistry
Molecular Dynamics Simulation
Monte Carlo Method
Nickel - chemistry
Particle Size
Phospholipids - chemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Surface Properties
title Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T23%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20DNA-Driven%20Assembled%20Phospholipid%20Nanodiscs%20as%20a%20Scaffold%20for%20Gold%20Nanoparticle%20Patterning&rft.jtitle=Langmuir&rft.au=Geerts,%20Nienke&rft.date=2013-10-22&rft.volume=29&rft.issue=42&rft.spage=13089&rft.epage=13094&rft.pages=13089-13094&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la403091w&rft_dat=%3Cproquest_cross%3E1534839605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-39bababca41f2283536f112df4dd9bf8bc78561a2f728f66cfd6f7dd72f78b933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444394443&rft_id=info:pmid/24073728&rfr_iscdi=true