Loading…
Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon
A 1 by 4 wavelength division multiplexer with 0.5nm bandwidth and no free spectral range limitation is demonstrated on silicon. The device utilizes wide bandwidth filters cascaded with ring resonators in order to select specific ring resonator modes and route each resonant mode to a separate port. T...
Saved in:
Published in: | Optics express 2014-05, Vol.22 (9), p.10408-10415 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 1 by 4 wavelength division multiplexer with 0.5nm bandwidth and no free spectral range limitation is demonstrated on silicon. The device utilizes wide bandwidth filters cascaded with ring resonators in order to select specific ring resonator modes and route each resonant mode to a separate port. This technology will enable dense wavelength division multiplexing covering the C - and L - bands with up to 100 10GB/s channels separated by 100GHz to be implemented for optical interconnects applications. A 1 by 4 wavelength division multiplexer with 3dB channel bandwidths as small as 0.5nm and 1dB insertion loss are demonstrated with 16dB inter-channel crosstalk suppression. A second wavelength division multiplexer scheme with four channels, each spaced 0.5nm apart without any free spectral range limitations is also demonstrated using wide bandwidth filters centered at the same wavelength to select resonances from four different ring resonators with slightly different widths. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.22.010408 |