Loading…

Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence

The parallel evolution of increased sensorimotor intelligence in humans and capuchins has been linked to the cognitive and manual demands of seasonal extractive faunivory. This hypothesis is attractive on theoretical grounds, but it has eluded widespread acceptance due to lack of empirical data. For...

Full description

Saved in:
Bibliographic Details
Published in:Journal of human evolution 2014-06, Vol.71, p.77-86
Main Authors: Melin, Amanda D., Young, Hilary C., Mosdossy, Krisztina N., Fedigan, Linda M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parallel evolution of increased sensorimotor intelligence in humans and capuchins has been linked to the cognitive and manual demands of seasonal extractive faunivory. This hypothesis is attractive on theoretical grounds, but it has eluded widespread acceptance due to lack of empirical data. For instance, the effects of seasonality on the extractive foraging behaviors of capuchins are largely unknown. Here we report foraging observations on four groups of wild capuchins (Cebus capucinus) inhabiting a seasonally dry tropical forest. We also measured intra-annual variation in temperature, rainfall, and food abundance. We found that the exploitation of embedded or mechanically protected invertebrates was concentrated during periods of fruit scarcity. Such a pattern suggests that embedded insects are best characterized as a fallback food for capuchins. We discuss the implications of seasonal extractive faunivory for the evolution of sensorimotor intelligence (SMI) in capuchins and hominins and suggest that the suite of features associated with SMI, including increased manual dexterity, tool use, and innovative problem solving are cognitive adaptations among frugivores that fall back seasonally on extractable foods. The selective pressures acting on SMI are predicted to be strongest among primates living in the most seasonal environments. This model is proffered to explain the differences in tool use between capuchin lineages, and SMI as an adaptation to extractive foraging is suggested to play an important role in hominin evolution.
ISSN:0047-2484
1095-8606
DOI:10.1016/j.jhevol.2014.02.009