Loading…

Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network

In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a s...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2014-06, Vol.30 (12), p.1730-1738
Main Authors: Damle, Nikhil Prakash, Mohanty, Debasisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53
cites cdi_FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53
container_end_page 1738
container_issue 12
container_start_page 1730
container_title Bioinformatics (Oxford, England)
container_volume 30
creator Damle, Nikhil Prakash
Mohanty, Debasisa
description In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html.
doi_str_mv 10.1093/bioinformatics/btu112
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1536684580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1536684580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EoqXwCSAv2QTs2s5jicpTqsQG1pGf1DSxgycRyt8T1FKJxWhmMefO6CB0SckNJRW7VT764GJqZe813Kp-oHR5hOaU5UXGS0qPDzNhM3QG8EkIEUTkp2i25KLglBZzJO-t9t3GJh8-8NYHCTaDQUGfZG9xss0UHwNsfAdYjVgG2YzgAUeHTWylDxl0U4LzGnebCFOlccfgYPvvmLbn6MTJBuzFvi_Q--PD2-o5W78-vazu1plmIu8zKabveCXssqwcr3JDjS6LgjFtuRPMKSaN1ow4IYyiQltayEIxTklZGWEEW6DrXW6X4tdgoa9bD9o2jQw2DlBTwfK85GLSsUBit6pTBEjW1V3yrUxjTUn9a7f-b7fe2Z24q_2JQbXWHKg_newH9yV-gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536684580</pqid></control><display><type>article</type><title>Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Damle, Nikhil Prakash ; Mohanty, Debasisa</creator><creatorcontrib>Damle, Nikhil Prakash ; Mohanty, Debasisa</creatorcontrib><description>In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btu112</identifier><identifier>PMID: 24574117</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Humans ; Mice ; Phosphoproteins - chemistry ; Phosphoproteins - metabolism ; Phosphorylation ; Protein Kinases - classification ; Protein Kinases - metabolism ; Protein Structure, Tertiary ; Rats ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2014-06, Vol.30 (12), p.1730-1738</ispartof><rights>The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53</citedby><cites>FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24574117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damle, Nikhil Prakash</creatorcontrib><creatorcontrib>Mohanty, Debasisa</creatorcontrib><title>Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html.</description><subject>Animals</subject><subject>Humans</subject><subject>Mice</subject><subject>Phosphoproteins - chemistry</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Kinases - classification</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EoqXwCSAv2QTs2s5jicpTqsQG1pGf1DSxgycRyt8T1FKJxWhmMefO6CB0SckNJRW7VT764GJqZe813Kp-oHR5hOaU5UXGS0qPDzNhM3QG8EkIEUTkp2i25KLglBZzJO-t9t3GJh8-8NYHCTaDQUGfZG9xss0UHwNsfAdYjVgG2YzgAUeHTWylDxl0U4LzGnebCFOlccfgYPvvmLbn6MTJBuzFvi_Q--PD2-o5W78-vazu1plmIu8zKabveCXssqwcr3JDjS6LgjFtuRPMKSaN1ow4IYyiQltayEIxTklZGWEEW6DrXW6X4tdgoa9bD9o2jQw2DlBTwfK85GLSsUBit6pTBEjW1V3yrUxjTUn9a7f-b7fe2Z24q_2JQbXWHKg_newH9yV-gQ</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Damle, Nikhil Prakash</creator><creator>Mohanty, Debasisa</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140615</creationdate><title>Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network</title><author>Damle, Nikhil Prakash ; Mohanty, Debasisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Mice</topic><topic>Phosphoproteins - chemistry</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Kinases - classification</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damle, Nikhil Prakash</creatorcontrib><creatorcontrib>Mohanty, Debasisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damle, Nikhil Prakash</au><au>Mohanty, Debasisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>30</volume><issue>12</issue><spage>1730</spage><epage>1738</epage><pages>1730-1738</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html.</abstract><cop>England</cop><pmid>24574117</pmid><doi>10.1093/bioinformatics/btu112</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2014-06, Vol.30 (12), p.1730-1738
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_1536684580
source Open Access: Oxford University Press Open Journals; PubMed Central
subjects Animals
Humans
Mice
Phosphoproteins - chemistry
Phosphoproteins - metabolism
Phosphorylation
Protein Kinases - classification
Protein Kinases - metabolism
Protein Structure, Tertiary
Rats
Software
title Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20kinase-substrate%20relationships%20by%20analysis%20of%20domain-specific%20phosphorylation%20network&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Damle,%20Nikhil%20Prakash&rft.date=2014-06-15&rft.volume=30&rft.issue=12&rft.spage=1730&rft.epage=1738&rft.pages=1730-1738&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btu112&rft_dat=%3Cproquest_cross%3E1536684580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-a5005495e289f496d1dc87733ce4f53fb3adcc30f55db15ce17a7b341089d5d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1536684580&rft_id=info:pmid/24574117&rfr_iscdi=true