Loading…

High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources

A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China’s carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2014-06, Vol.48 (12), p.7085-7093
Main Authors: Wang, Jinnan, Cai, Bofeng, Zhang, Lixiao, Cao, Dong, Liu, Lancui, Zhou, Ying, Zhang, Zhansheng, Xue, Wenbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3
cites cdi_FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3
container_end_page 7093
container_issue 12
container_start_page 7085
container_title Environmental science & technology
container_volume 48
creator Wang, Jinnan
Cai, Bofeng
Zhang, Lixiao
Cao, Dong
Liu, Lancui
Zhou, Ying
Zhang, Zhansheng
Xue, Wenbo
description A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China’s carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO2 emission gridded data has been built up for China based on point emission sources and other supporting data. The predominance of emissions from industrial point sources (84% of total emissions) in China supports the use of bottom-up methodology. The resultant emission map is informative and proved to be more spatially accurate than the EDGAR data. Spatial distribution of CO2 emissions in China is highly unbalanced and has positive spatial autocorrelation. The spatial pattern is mainly influenced by key cities and key regions, i.e., the Jing-Jin-Ji region, the Yangtze River delta region, and the Pearl River delta region. The emission map indicated that the supervision of 1% of total land could enable the management of about 70% of emissions in China.
doi_str_mv 10.1021/es405369r
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1537177640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3350191431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3</originalsourceid><addsrcrecordid>eNpl0NtKxDAQBuAgiq6HC19AAiLoRTVpmjS5lF1PICgeQK9K2kw00m3WpBV9eyOuB_RqYPiY-fkR2qRkn5KcHkAsCGdChQU0ojwnGZecLqIRIZRliom7FbQa4xMhJGdELqOVvJAFoaIYoftT9_CIryD6duid7_BYhzqNifOvzgA-mroYP_YnwRkDBk90r7H1AY8fXafxBIJ7SWsb_BRfetf1-NoPoYG4jpasbiNszOcauj0-uhmfZucXJ2fjw_NMs5L1mbUGdF5TJaTl1pQmF0qAZbVk1OZW1MrWrKxNCpzWUAglqaINl1BQUBrYGtr9vDsL_nmA2FcpcgNtqzvwQ6woZyUtS1GQRLf_0KeUtUvpkkoVSsmJTGrvUzXBxxjAVrPgpjq8VZRUH31X330nuzW_ONRTMN_yq-AEduZAx0a3NuiucfHHSa4UI-WP0038lerfw3fwZZLx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540588508</pqid></control><display><type>article</type><title>High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources</title><source>Access via American Chemical Society</source><creator>Wang, Jinnan ; Cai, Bofeng ; Zhang, Lixiao ; Cao, Dong ; Liu, Lancui ; Zhou, Ying ; Zhang, Zhansheng ; Xue, Wenbo</creator><creatorcontrib>Wang, Jinnan ; Cai, Bofeng ; Zhang, Lixiao ; Cao, Dong ; Liu, Lancui ; Zhou, Ying ; Zhang, Zhansheng ; Xue, Wenbo</creatorcontrib><description>A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China’s carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO2 emission gridded data has been built up for China based on point emission sources and other supporting data. The predominance of emissions from industrial point sources (84% of total emissions) in China supports the use of bottom-up methodology. The resultant emission map is informative and proved to be more spatially accurate than the EDGAR data. Spatial distribution of CO2 emissions in China is highly unbalanced and has positive spatial autocorrelation. The spatial pattern is mainly influenced by key cities and key regions, i.e., the Jing-Jin-Ji region, the Yangtze River delta region, and the Pearl River delta region. The emission map indicated that the supervision of 1% of total land could enable the management of about 70% of emissions in China.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es405369r</identifier><identifier>PMID: 24840164</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air Pollutants - analysis ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon Dioxide - analysis ; China ; Cities ; Climatology. Bioclimatology. Climate change ; Desert Climate ; Earth, ocean, space ; Emissions ; Energy-Generating Resources ; Exact sciences and technology ; External geophysics ; Geography ; Industry ; Meteorology</subject><ispartof>Environmental science &amp; technology, 2014-06, Vol.48 (12), p.7085-7093</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 17, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3</citedby><cites>FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28599307$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24840164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jinnan</creatorcontrib><creatorcontrib>Cai, Bofeng</creatorcontrib><creatorcontrib>Zhang, Lixiao</creatorcontrib><creatorcontrib>Cao, Dong</creatorcontrib><creatorcontrib>Liu, Lancui</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Zhang, Zhansheng</creatorcontrib><creatorcontrib>Xue, Wenbo</creatorcontrib><title>High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China’s carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO2 emission gridded data has been built up for China based on point emission sources and other supporting data. The predominance of emissions from industrial point sources (84% of total emissions) in China supports the use of bottom-up methodology. The resultant emission map is informative and proved to be more spatially accurate than the EDGAR data. Spatial distribution of CO2 emissions in China is highly unbalanced and has positive spatial autocorrelation. The spatial pattern is mainly influenced by key cities and key regions, i.e., the Jing-Jin-Ji region, the Yangtze River delta region, and the Pearl River delta region. The emission map indicated that the supervision of 1% of total land could enable the management of about 70% of emissions in China.</description><subject>Air Pollutants - analysis</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>China</subject><subject>Cities</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Desert Climate</subject><subject>Earth, ocean, space</subject><subject>Emissions</subject><subject>Energy-Generating Resources</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geography</subject><subject>Industry</subject><subject>Meteorology</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpl0NtKxDAQBuAgiq6HC19AAiLoRTVpmjS5lF1PICgeQK9K2kw00m3WpBV9eyOuB_RqYPiY-fkR2qRkn5KcHkAsCGdChQU0ojwnGZecLqIRIZRliom7FbQa4xMhJGdELqOVvJAFoaIYoftT9_CIryD6duid7_BYhzqNifOvzgA-mroYP_YnwRkDBk90r7H1AY8fXafxBIJ7SWsb_BRfetf1-NoPoYG4jpasbiNszOcauj0-uhmfZucXJ2fjw_NMs5L1mbUGdF5TJaTl1pQmF0qAZbVk1OZW1MrWrKxNCpzWUAglqaINl1BQUBrYGtr9vDsL_nmA2FcpcgNtqzvwQ6woZyUtS1GQRLf_0KeUtUvpkkoVSsmJTGrvUzXBxxjAVrPgpjq8VZRUH31X330nuzW_ONRTMN_yq-AEduZAx0a3NuiucfHHSa4UI-WP0038lerfw3fwZZLx</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>Wang, Jinnan</creator><creator>Cai, Bofeng</creator><creator>Zhang, Lixiao</creator><creator>Cao, Dong</creator><creator>Liu, Lancui</creator><creator>Zhou, Ying</creator><creator>Zhang, Zhansheng</creator><creator>Xue, Wenbo</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140617</creationdate><title>High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources</title><author>Wang, Jinnan ; Cai, Bofeng ; Zhang, Lixiao ; Cao, Dong ; Liu, Lancui ; Zhou, Ying ; Zhang, Zhansheng ; Xue, Wenbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air Pollutants - analysis</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>China</topic><topic>Cities</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Desert Climate</topic><topic>Earth, ocean, space</topic><topic>Emissions</topic><topic>Energy-Generating Resources</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geography</topic><topic>Industry</topic><topic>Meteorology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinnan</creatorcontrib><creatorcontrib>Cai, Bofeng</creatorcontrib><creatorcontrib>Zhang, Lixiao</creatorcontrib><creatorcontrib>Cao, Dong</creatorcontrib><creatorcontrib>Liu, Lancui</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Zhang, Zhansheng</creatorcontrib><creatorcontrib>Xue, Wenbo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinnan</au><au>Cai, Bofeng</au><au>Zhang, Lixiao</au><au>Cao, Dong</au><au>Liu, Lancui</au><au>Zhou, Ying</au><au>Zhang, Zhansheng</au><au>Xue, Wenbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-06-17</date><risdate>2014</risdate><volume>48</volume><issue>12</issue><spage>7085</spage><epage>7093</epage><pages>7085-7093</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A high spatial resolution carbon dioxide (CO2) emission map of China is proving to be essential for China’s carbon cycle research and carbon reduction strategies given the current low quality of CO2 emission data and the inconsistencies in data quality between different regions. Ten km resolution CO2 emission gridded data has been built up for China based on point emission sources and other supporting data. The predominance of emissions from industrial point sources (84% of total emissions) in China supports the use of bottom-up methodology. The resultant emission map is informative and proved to be more spatially accurate than the EDGAR data. Spatial distribution of CO2 emissions in China is highly unbalanced and has positive spatial autocorrelation. The spatial pattern is mainly influenced by key cities and key regions, i.e., the Jing-Jin-Ji region, the Yangtze River delta region, and the Pearl River delta region. The emission map indicated that the supervision of 1% of total land could enable the management of about 70% of emissions in China.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24840164</pmid><doi>10.1021/es405369r</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-06, Vol.48 (12), p.7085-7093
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1537177640
source Access via American Chemical Society
subjects Air Pollutants - analysis
Carbon
Carbon cycle
Carbon dioxide
Carbon Dioxide - analysis
China
Cities
Climatology. Bioclimatology. Climate change
Desert Climate
Earth, ocean, space
Emissions
Energy-Generating Resources
Exact sciences and technology
External geophysics
Geography
Industry
Meteorology
title High Resolution Carbon Dioxide Emission Gridded Data for China Derived from Point Sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Resolution%20Carbon%20Dioxide%20Emission%20Gridded%20Data%20for%20China%20Derived%20from%20Point%20Sources&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Jinnan&rft.date=2014-06-17&rft.volume=48&rft.issue=12&rft.spage=7085&rft.epage=7093&rft.pages=7085-7093&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es405369r&rft_dat=%3Cproquest_cross%3E3350191431%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-ffdea2b1968f5fd7d2696ef3b831f2f6b9fb37bd8406efe4698191c58e41e9ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1540588508&rft_id=info:pmid/24840164&rfr_iscdi=true