Loading…
Drought Prediction System for Improved Climate Change Mitigation
Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2014-07, Vol.52 (7), p.4032-4037 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03 |
container_end_page | 4037 |
container_issue | 7 |
container_start_page | 4032 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 52 |
creator | Berhan, Getachew Hill, Shawndra Tadesse, Tsegaye Atnafu, Solomon |
description | Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making. |
doi_str_mv | 10.1109/TGRS.2013.2279020 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1540223627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6616626</ieee_id><sourcerecordid>1770319407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</originalsourceid><addsrcrecordid>eNqF0EtLxDAQwPEgCq6PDyBeCiJ46TozTdPkpqxPUBQf55I207XSbTXpCn57W3bx4MVTDvnNkPyFOECYIoI5fbl-ep4SYDIlygwQbIgJpqmOQUm5KSaARsWkDW2LnRDeAVCmmE3E2YXvlvO3Pnr07Oqyr7s2ev4OPS-iqvPR7eLDd1_sollTL2zP0ezNtnOO7uu-nttR74mtyjaB99fnrni9unyZ3cR3D9e3s_O7uEy06eNUVcZCwQisUiR0qEwmbVWwU6aQjAk70FYpqXVJlOrEZc6VUheFdVUBya44We0dHvS55NDnizqU3DS25W4ZcswySNBIyP6nqQSiRNFIj_7Q927p2-Ejg0KSSKTkoHClSt-F4LnKP_yQw3_nCPmYPx_z52P-fJ1_mDleb7ahtE3lbVvW4XeQtIYMYXSHK1cz8--1UqgUqeQHDvKMKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512412264</pqid></control><display><type>article</type><title>Drought Prediction System for Improved Climate Change Mitigation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</creator><creatorcontrib>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</creatorcontrib><description>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2279020</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Climate change ; Data models ; Drought ; Drought prediction ; Droughts ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; intelligent system ; Internal geophysics ; Mathematical models ; Meteorology ; modeling ; Monitoring ; Predictive models ; satellite image ; Satellites ; Software ; standardized deviation of the normalized differential vegetation index (SDNDVI) ; Time lag ; Vegetation mapping</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-07, Vol.52 (7), p.4032-4037</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</citedby><cites>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6616626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28807100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berhan, Getachew</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Tadesse, Tsegaye</creatorcontrib><creatorcontrib>Atnafu, Solomon</creatorcontrib><title>Drought Prediction System for Improved Climate Change Mitigation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</description><subject>Applied geophysics</subject><subject>Climate change</subject><subject>Data models</subject><subject>Drought</subject><subject>Drought prediction</subject><subject>Droughts</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>intelligent system</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>modeling</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>satellite image</subject><subject>Satellites</subject><subject>Software</subject><subject>standardized deviation of the normalized differential vegetation index (SDNDVI)</subject><subject>Time lag</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLxDAQwPEgCq6PDyBeCiJ46TozTdPkpqxPUBQf55I207XSbTXpCn57W3bx4MVTDvnNkPyFOECYIoI5fbl-ep4SYDIlygwQbIgJpqmOQUm5KSaARsWkDW2LnRDeAVCmmE3E2YXvlvO3Pnr07Oqyr7s2ev4OPS-iqvPR7eLDd1_sollTL2zP0ezNtnOO7uu-nttR74mtyjaB99fnrni9unyZ3cR3D9e3s_O7uEy06eNUVcZCwQisUiR0qEwmbVWwU6aQjAk70FYpqXVJlOrEZc6VUheFdVUBya44We0dHvS55NDnizqU3DS25W4ZcswySNBIyP6nqQSiRNFIj_7Q927p2-Ejg0KSSKTkoHClSt-F4LnKP_yQw3_nCPmYPx_z52P-fJ1_mDleb7ahtE3lbVvW4XeQtIYMYXSHK1cz8--1UqgUqeQHDvKMKw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Berhan, Getachew</creator><creator>Hill, Shawndra</creator><creator>Tadesse, Tsegaye</creator><creator>Atnafu, Solomon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>Drought Prediction System for Improved Climate Change Mitigation</title><author>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied geophysics</topic><topic>Climate change</topic><topic>Data models</topic><topic>Drought</topic><topic>Drought prediction</topic><topic>Droughts</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>intelligent system</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>modeling</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>satellite image</topic><topic>Satellites</topic><topic>Software</topic><topic>standardized deviation of the normalized differential vegetation index (SDNDVI)</topic><topic>Time lag</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berhan, Getachew</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Tadesse, Tsegaye</creatorcontrib><creatorcontrib>Atnafu, Solomon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berhan, Getachew</au><au>Hill, Shawndra</au><au>Tadesse, Tsegaye</au><au>Atnafu, Solomon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drought Prediction System for Improved Climate Change Mitigation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>52</volume><issue>7</issue><spage>4032</spage><epage>4037</epage><pages>4032-4037</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2279020</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2014-07, Vol.52 (7), p.4032-4037 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1540223627 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied geophysics Climate change Data models Drought Drought prediction Droughts Earth sciences Earth, ocean, space Exact sciences and technology intelligent system Internal geophysics Mathematical models Meteorology modeling Monitoring Predictive models satellite image Satellites Software standardized deviation of the normalized differential vegetation index (SDNDVI) Time lag Vegetation mapping |
title | Drought Prediction System for Improved Climate Change Mitigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drought%20Prediction%20System%20for%20Improved%20Climate%20Change%20Mitigation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Berhan,%20Getachew&rft.date=2014-07-01&rft.volume=52&rft.issue=7&rft.spage=4032&rft.epage=4037&rft.pages=4032-4037&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2279020&rft_dat=%3Cproquest_pasca%3E1770319407%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512412264&rft_id=info:pmid/&rft_ieee_id=6616626&rfr_iscdi=true |