Loading…

Drought Prediction System for Improved Climate Change Mitigation

Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2014-07, Vol.52 (7), p.4032-4037
Main Authors: Berhan, Getachew, Hill, Shawndra, Tadesse, Tsegaye, Atnafu, Solomon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03
cites cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03
container_end_page 4037
container_issue 7
container_start_page 4032
container_title IEEE transactions on geoscience and remote sensing
container_volume 52
creator Berhan, Getachew
Hill, Shawndra
Tadesse, Tsegaye
Atnafu, Solomon
description Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.
doi_str_mv 10.1109/TGRS.2013.2279020
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1540223627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6616626</ieee_id><sourcerecordid>1770319407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</originalsourceid><addsrcrecordid>eNqF0EtLxDAQwPEgCq6PDyBeCiJ46TozTdPkpqxPUBQf55I207XSbTXpCn57W3bx4MVTDvnNkPyFOECYIoI5fbl-ep4SYDIlygwQbIgJpqmOQUm5KSaARsWkDW2LnRDeAVCmmE3E2YXvlvO3Pnr07Oqyr7s2ev4OPS-iqvPR7eLDd1_sollTL2zP0ezNtnOO7uu-nttR74mtyjaB99fnrni9unyZ3cR3D9e3s_O7uEy06eNUVcZCwQisUiR0qEwmbVWwU6aQjAk70FYpqXVJlOrEZc6VUheFdVUBya44We0dHvS55NDnizqU3DS25W4ZcswySNBIyP6nqQSiRNFIj_7Q927p2-Ejg0KSSKTkoHClSt-F4LnKP_yQw3_nCPmYPx_z52P-fJ1_mDleb7ahtE3lbVvW4XeQtIYMYXSHK1cz8--1UqgUqeQHDvKMKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512412264</pqid></control><display><type>article</type><title>Drought Prediction System for Improved Climate Change Mitigation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</creator><creatorcontrib>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</creatorcontrib><description>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2279020</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Climate change ; Data models ; Drought ; Drought prediction ; Droughts ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; intelligent system ; Internal geophysics ; Mathematical models ; Meteorology ; modeling ; Monitoring ; Predictive models ; satellite image ; Satellites ; Software ; standardized deviation of the normalized differential vegetation index (SDNDVI) ; Time lag ; Vegetation mapping</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-07, Vol.52 (7), p.4032-4037</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</citedby><cites>FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6616626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28807100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berhan, Getachew</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Tadesse, Tsegaye</creatorcontrib><creatorcontrib>Atnafu, Solomon</creatorcontrib><title>Drought Prediction System for Improved Climate Change Mitigation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</description><subject>Applied geophysics</subject><subject>Climate change</subject><subject>Data models</subject><subject>Drought</subject><subject>Drought prediction</subject><subject>Droughts</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>intelligent system</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>modeling</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>satellite image</subject><subject>Satellites</subject><subject>Software</subject><subject>standardized deviation of the normalized differential vegetation index (SDNDVI)</subject><subject>Time lag</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLxDAQwPEgCq6PDyBeCiJ46TozTdPkpqxPUBQf55I207XSbTXpCn57W3bx4MVTDvnNkPyFOECYIoI5fbl-ep4SYDIlygwQbIgJpqmOQUm5KSaARsWkDW2LnRDeAVCmmE3E2YXvlvO3Pnr07Oqyr7s2ev4OPS-iqvPR7eLDd1_sollTL2zP0ezNtnOO7uu-nttR74mtyjaB99fnrni9unyZ3cR3D9e3s_O7uEy06eNUVcZCwQisUiR0qEwmbVWwU6aQjAk70FYpqXVJlOrEZc6VUheFdVUBya44We0dHvS55NDnizqU3DS25W4ZcswySNBIyP6nqQSiRNFIj_7Q927p2-Ejg0KSSKTkoHClSt-F4LnKP_yQw3_nCPmYPx_z52P-fJ1_mDleb7ahtE3lbVvW4XeQtIYMYXSHK1cz8--1UqgUqeQHDvKMKw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Berhan, Getachew</creator><creator>Hill, Shawndra</creator><creator>Tadesse, Tsegaye</creator><creator>Atnafu, Solomon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>Drought Prediction System for Improved Climate Change Mitigation</title><author>Berhan, Getachew ; Hill, Shawndra ; Tadesse, Tsegaye ; Atnafu, Solomon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied geophysics</topic><topic>Climate change</topic><topic>Data models</topic><topic>Drought</topic><topic>Drought prediction</topic><topic>Droughts</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>intelligent system</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>modeling</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>satellite image</topic><topic>Satellites</topic><topic>Software</topic><topic>standardized deviation of the normalized differential vegetation index (SDNDVI)</topic><topic>Time lag</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berhan, Getachew</creatorcontrib><creatorcontrib>Hill, Shawndra</creatorcontrib><creatorcontrib>Tadesse, Tsegaye</creatorcontrib><creatorcontrib>Atnafu, Solomon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berhan, Getachew</au><au>Hill, Shawndra</au><au>Tadesse, Tsegaye</au><au>Atnafu, Solomon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drought Prediction System for Improved Climate Change Mitigation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>52</volume><issue>7</issue><spage>4032</spage><epage>4037</epage><pages>4032-4037</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to climate changes and the uncertainties in future weather conditions, research on drought monitoring information received more attention from politicians and scientists. The objective of this paper is to develop a new intelligent system concept for drought information extraction and predictions from satellite images. For the modeling experiment, this study used 24 years of data sets on selected attributes. By using these data sets, ten models were developed for predicting DroughtObjects with a one- to four-month time lag for the growing season from June to October with an accuracy rate ranging from 0.71 to 0.95. The process of the system that uses the new concept was also demonstrated on an easy-to-use graphical user interface. The output of this new concept can be developed to a full system and is helpful for extracting the freely available satellite images for drought monitoring and climate change mitigation applications at different levels of decision making.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2279020</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2014-07, Vol.52 (7), p.4032-4037
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1540223627
source IEEE Electronic Library (IEL) Journals
subjects Applied geophysics
Climate change
Data models
Drought
Drought prediction
Droughts
Earth sciences
Earth, ocean, space
Exact sciences and technology
intelligent system
Internal geophysics
Mathematical models
Meteorology
modeling
Monitoring
Predictive models
satellite image
Satellites
Software
standardized deviation of the normalized differential vegetation index (SDNDVI)
Time lag
Vegetation mapping
title Drought Prediction System for Improved Climate Change Mitigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drought%20Prediction%20System%20for%20Improved%20Climate%20Change%20Mitigation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Berhan,%20Getachew&rft.date=2014-07-01&rft.volume=52&rft.issue=7&rft.spage=4032&rft.epage=4037&rft.pages=4032-4037&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2279020&rft_dat=%3Cproquest_pasca%3E1770319407%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-56f9a0be10e65121d16974afbed69b4e13ed08a66488c22583d7ddc48bbadfb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512412264&rft_id=info:pmid/&rft_ieee_id=6616626&rfr_iscdi=true