Loading…
Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain
The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in...
Saved in:
Published in: | Reviews of geophysics (1985) 2012-09, Vol.50 (3), p.np-n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled‐process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal‐hydrological‐mechanical (THM) multiphysics processes over the long‐term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small‐scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long‐term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant. Significant effort was devoted to predicting the long‐term stability of underground excavations under (mechanical) strength degradation and seismic loading, perhaps one of the most challenging tasks within the project. We note that such long‐term st |
---|---|
ISSN: | 8755-1209 1944-9208 |
DOI: | 10.1029/2012RG000391 |