Loading…

Enhanced functionally graded material shell finite elements

Structures made of Functionally Graded Materials (FGMs) show a gradual variation of material properties in one, two, or three directions. In this paper, an efficient low‐order shell element with six nodal degrees of freedom (including the drill rotation) is presented, supplemented with a proper meth...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2014-01, Vol.94 (1-2), p.72-84
Main Authors: Kugler, S., Fotiu, P.A., Murin, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structures made of Functionally Graded Materials (FGMs) show a gradual variation of material properties in one, two, or three directions. In this paper, an efficient low‐order shell element with six nodal degrees of freedom (including the drill rotation) is presented, supplemented with a proper method for calculating effective elastic properties. This new FGM shell element can be coupled with 3D FGM beam elements on a single node. The numerical results indicate high effectiveness and accuracy of the proposed approach. Structures made of Functionally Graded Materials (FGMs) show a gradual variation of material properties in one, two, or three directions. In this paper, an efficient low‐order shell element with six nodal degrees of freedom (including the drill rotation) is presented, supplemented with a proper method for calculating effective elastic properties. This new FGM shell element can be coupled with 3D FGM beam elements on a single node. The numerical results indicate high effectiveness and accuracy of the proposed approach.
ISSN:0044-2267
1521-4001
DOI:10.1002/zamm.201200183