Loading…
Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater
Synthesis, characterization, and amidoximation of diaminomaleodinitrile‐functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 1...
Saved in:
Published in: | Journal of applied polymer science 2012-07, Vol.125 (2), p.1136-1145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813 |
---|---|
cites | cdi_FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813 |
container_end_page | 1145 |
container_issue | 2 |
container_start_page | 1136 |
container_title | Journal of applied polymer science |
container_volume | 125 |
creator | Abdel-Razik, Hamada H. Kenawy, El-Refaie |
description | Synthesis, characterization, and amidoximation of diaminomaleodinitrile‐functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 10−3 mol/L, T = 80°C and t = 3 h. Water uptake of the grafted‐PET film increased with the increase of grafting yield. The imparted cyano group of the grafted polymer chains (with degree of grafting up to 83%) was converted into amidoxime group by reaction with hydroxylamine. The unique advantage of this polymer is that it contains double amidoxime groups per repeating unit and an additional diethylene spacer unit between neighboring amidoxime groups in each monomeric unit. The grafted‐PET films were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The grafted‐PET films are more thermally stable than the ungrafted‐PET membrane, since the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleodinitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN83‐g‐PET was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe2+, Cu2+, Ni2+, Co2+, and Ag1+ from waste water. The amidoximated‐film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ are investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 |
doi_str_mv | 10.1002/app.34832 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541408124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277823861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813</originalsourceid><addsrcrecordid>eNp1kd1u1DAQhSMEEkvhgjewhJBAatpx_nNZrWBBqmAlfsWNNXEmjYsTp7aXbfo8PChOt_QCiStLZ75z5JkTRc85nHCA5BSn6STNqjR5EK041GWcFUn1MFqFGY-rus4fR0-cuwTgPIdiFf3-NI--J6fcMZM9WpSerLpBr8x4zHBsGQ6qNddquJWY6VirgjSaATWZVo3KW6Up7najXAjU6oZaNhk9k-9nTSOxEElT73vU6IldWOy8Y52xTBqtKdjGC9YT_prZQB51mFkzsD06T_vgsE-jR12Q6dndexR9efvm8_pdfP5x8359dh7LHHgScw4FNXnTJBwJOEIKWdtQXjVlU7bUYto2aZlAVvACKglpnVZ1VhVIbZNjxdOj6NUhd7LmakfOi0E5SVrjSGbnBM8znkHFkyygL_5BL83Ohu0XipcAS3KgXh8oaY1zljox2XBJOwsOYulLhL7EbV-BfXmXiE6i7iyOUrl7Q5KXdcGz5ZOnB24fzj7_P1Ccbbd_k-ODQ4WDXt870P4URZmWufj2YSM2XwHW2_UP8T39A3xht_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517008948</pqid></control><display><type>article</type><title>Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater</title><source>Wiley</source><creator>Abdel-Razik, Hamada H. ; Kenawy, El-Refaie</creator><creatorcontrib>Abdel-Razik, Hamada H. ; Kenawy, El-Refaie</creatorcontrib><description>Synthesis, characterization, and amidoximation of diaminomaleodinitrile‐functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 10−3 mol/L, T = 80°C and t = 3 h. Water uptake of the grafted‐PET film increased with the increase of grafting yield. The imparted cyano group of the grafted polymer chains (with degree of grafting up to 83%) was converted into amidoxime group by reaction with hydroxylamine. The unique advantage of this polymer is that it contains double amidoxime groups per repeating unit and an additional diethylene spacer unit between neighboring amidoxime groups in each monomeric unit. The grafted‐PET films were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The grafted‐PET films are more thermally stable than the ungrafted‐PET membrane, since the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleodinitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN83‐g‐PET was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe2+, Cu2+, Ni2+, Co2+, and Ag1+ from waste water. The amidoximated‐film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ are investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34832</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>amidoximation ; Applied sciences ; Binding ; Chemical modifications ; Chemical reactions and properties ; Exact sciences and technology ; General purification processes ; graft copolymerization ; Grafting ; Grafts ; Heavy metals ; Materials science ; metal adsorbents ; Organic polymers ; Physicochemistry of polymers ; Pollution ; polyethylene terephthalate ; Polyethylene terephthalates ; Polymers ; Synthesis ; Thermal stability ; Waste water ; Wastewaters ; Water treatment and pollution</subject><ispartof>Journal of applied polymer science, 2012-07, Vol.125 (2), p.1136-1145</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813</citedby><cites>FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25796141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdel-Razik, Hamada H.</creatorcontrib><creatorcontrib>Kenawy, El-Refaie</creatorcontrib><title>Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Synthesis, characterization, and amidoximation of diaminomaleodinitrile‐functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 10−3 mol/L, T = 80°C and t = 3 h. Water uptake of the grafted‐PET film increased with the increase of grafting yield. The imparted cyano group of the grafted polymer chains (with degree of grafting up to 83%) was converted into amidoxime group by reaction with hydroxylamine. The unique advantage of this polymer is that it contains double amidoxime groups per repeating unit and an additional diethylene spacer unit between neighboring amidoxime groups in each monomeric unit. The grafted‐PET films were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The grafted‐PET films are more thermally stable than the ungrafted‐PET membrane, since the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleodinitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN83‐g‐PET was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe2+, Cu2+, Ni2+, Co2+, and Ag1+ from waste water. The amidoximated‐film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ are investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><subject>amidoximation</subject><subject>Applied sciences</subject><subject>Binding</subject><subject>Chemical modifications</subject><subject>Chemical reactions and properties</subject><subject>Exact sciences and technology</subject><subject>General purification processes</subject><subject>graft copolymerization</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Heavy metals</subject><subject>Materials science</subject><subject>metal adsorbents</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Pollution</subject><subject>polyethylene terephthalate</subject><subject>Polyethylene terephthalates</subject><subject>Polymers</subject><subject>Synthesis</subject><subject>Thermal stability</subject><subject>Waste water</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kd1u1DAQhSMEEkvhgjewhJBAatpx_nNZrWBBqmAlfsWNNXEmjYsTp7aXbfo8PChOt_QCiStLZ75z5JkTRc85nHCA5BSn6STNqjR5EK041GWcFUn1MFqFGY-rus4fR0-cuwTgPIdiFf3-NI--J6fcMZM9WpSerLpBr8x4zHBsGQ6qNddquJWY6VirgjSaATWZVo3KW6Up7najXAjU6oZaNhk9k-9nTSOxEElT73vU6IldWOy8Y52xTBqtKdjGC9YT_prZQB51mFkzsD06T_vgsE-jR12Q6dndexR9efvm8_pdfP5x8359dh7LHHgScw4FNXnTJBwJOEIKWdtQXjVlU7bUYto2aZlAVvACKglpnVZ1VhVIbZNjxdOj6NUhd7LmakfOi0E5SVrjSGbnBM8znkHFkyygL_5BL83Ohu0XipcAS3KgXh8oaY1zljox2XBJOwsOYulLhL7EbV-BfXmXiE6i7iyOUrl7Q5KXdcGz5ZOnB24fzj7_P1Ccbbd_k-ODQ4WDXt870P4URZmWufj2YSM2XwHW2_UP8T39A3xht_w</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Abdel-Razik, Hamada H.</creator><creator>Kenawy, El-Refaie</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120715</creationdate><title>Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater</title><author>Abdel-Razik, Hamada H. ; Kenawy, El-Refaie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>amidoximation</topic><topic>Applied sciences</topic><topic>Binding</topic><topic>Chemical modifications</topic><topic>Chemical reactions and properties</topic><topic>Exact sciences and technology</topic><topic>General purification processes</topic><topic>graft copolymerization</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Heavy metals</topic><topic>Materials science</topic><topic>metal adsorbents</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Pollution</topic><topic>polyethylene terephthalate</topic><topic>Polyethylene terephthalates</topic><topic>Polymers</topic><topic>Synthesis</topic><topic>Thermal stability</topic><topic>Waste water</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Razik, Hamada H.</creatorcontrib><creatorcontrib>Kenawy, El-Refaie</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Razik, Hamada H.</au><au>Kenawy, El-Refaie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2012-07-15</date><risdate>2012</risdate><volume>125</volume><issue>2</issue><spage>1136</spage><epage>1145</epage><pages>1136-1145</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Synthesis, characterization, and amidoximation of diaminomaleodinitrile‐functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 10−3 mol/L, T = 80°C and t = 3 h. Water uptake of the grafted‐PET film increased with the increase of grafting yield. The imparted cyano group of the grafted polymer chains (with degree of grafting up to 83%) was converted into amidoxime group by reaction with hydroxylamine. The unique advantage of this polymer is that it contains double amidoxime groups per repeating unit and an additional diethylene spacer unit between neighboring amidoxime groups in each monomeric unit. The grafted‐PET films were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The grafted‐PET films are more thermally stable than the ungrafted‐PET membrane, since the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleodinitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN83‐g‐PET was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe2+, Cu2+, Ni2+, Co2+, and Ag1+ from waste water. The amidoximated‐film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ are investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34832</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2012-07, Vol.125 (2), p.1136-1145 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541408124 |
source | Wiley |
subjects | amidoximation Applied sciences Binding Chemical modifications Chemical reactions and properties Exact sciences and technology General purification processes graft copolymerization Grafting Grafts Heavy metals Materials science metal adsorbents Organic polymers Physicochemistry of polymers Pollution polyethylene terephthalate Polyethylene terephthalates Polymers Synthesis Thermal stability Waste water Wastewaters Water treatment and pollution |
title | Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20characterization,%20and%20amidoximation%20of%20diaminomaleodinitrile-functionalized%20polyethylene%20terephthalate%20grafts%20for%20collecting%20heavy%20metals%20from%20wastewater&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Abdel-Razik,%20Hamada%20H.&rft.date=2012-07-15&rft.volume=125&rft.issue=2&rft.spage=1136&rft.epage=1145&rft.pages=1136-1145&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34832&rft_dat=%3Cproquest_cross%3E3277823861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5012-1106eb5bb21ae01a0304dbe58b7b7deda3db3720461608c039389486aedb5a813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517008948&rft_id=info:pmid/&rfr_iscdi=true |