Loading…

On the Development of Osmotically Dehydrated Seabuckthorn Fruits: Pretreatments, Osmotic Dehydration, Postdrying Techniques, and Nutritional Quality

Osmotic dehydration of whole seabuckthorn berries, followed by convective or vacuum drying, was investigated. First, different pretreatments were applied to the fruits in order to accelerate the rate of osmotic dehydration: immersion in liquid nitrogen, steam blanching, or freeze cycles. Immersion i...

Full description

Saved in:
Bibliographic Details
Published in:Drying technology 2014-05, Vol.32 (7), p.813-819
Main Authors: Araya-Farias, Monica, Macaigne, Ophelie, Ratti, Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osmotic dehydration of whole seabuckthorn berries, followed by convective or vacuum drying, was investigated. First, different pretreatments were applied to the fruits in order to accelerate the rate of osmotic dehydration: immersion in liquid nitrogen, steam blanching, or freeze cycles. Immersion in liquid nitrogen was found to be the best pretreatment to maximize dehydration rate and to increase sugar gain during osmotic dehydration. An evaluation of moisture loss and sugar gain kinetics during osmotic dehydration of seabuckthorn fruits pretreated with liquid nitrogen, followed by vacuum or hot-air drying, was then performed. Loss of nutritional compounds due to processing was also measured. Sugar intake and partial dehydration of seabuckthorn samples increased with osmosis time and reached an equilibrium value after 4 h treatment. The finish drying methods (vacuum or convective) applied after OD showed a marked impact on the remaining moisture content of seabuckthorn samples. Concentration of some nutritional compounds was, however, dramatically reduced after the combined osmotic dehydration/drying processes.
ISSN:0737-3937
1532-2300
DOI:10.1080/07373937.2013.866143