Loading…
Wolf Pack Algorithm for Unconstrained Global Optimization
The wolf pack unites and cooperates closely to hunt for the prey in the Tibetan Plateau, which shows wonderful skills and amazing strategies. Inspired by their prey hunting behaviors and distribution mode, we abstracted three intelligent behaviors, scouting, calling, and besieging, and two intellige...
Saved in:
Published in: | Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The wolf pack unites and cooperates closely to hunt for the prey in the Tibetan Plateau, which shows wonderful skills and amazing strategies. Inspired by their prey hunting behaviors and distribution mode, we abstracted three intelligent behaviors, scouting, calling, and besieging, and two intelligent rules, winner-take-all generation rule of lead wolf and stronger-survive renewing rule of wolf pack. Then we proposed a new heuristic swarm intelligent method, named wolf pack algorithm (WPA). Experiments are conducted on a suit of benchmark functions with different characteristics, unimodal/multimodal, separable/nonseparable, and the impact of several distance measurements and parameters on WPA is discussed. What is more, the compared simulation experiments with other five typical intelligent algorithms, genetic algorithm, particle swarm optimization algorithm, artificial fish swarm algorithm, artificial bee colony algorithm, and firefly algorithm, show that WPA has better convergence and robustness, especially for high-dimensional functions. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2014/465082 |