Loading…

Estimation of transient boundary flux for a developing flow in a parallel plate channel

Purpose – The purpose of this paper is to develop a numerical model for estimating the unknown boundary heat flux in a parallel plate channel for the case of a hydrodynamically and thermally developing laminar flow. Design/methodology/approach – The conjugate gradient method (CGM) is used to solve t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of numerical methods for heat & fluid flow 2014-01, Vol.24 (3), p.522-544
Main Authors: Kumar Parwani, Ajit, Talukdar, Prabal, Subbarao, P.M.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose – The purpose of this paper is to develop a numerical model for estimating the unknown boundary heat flux in a parallel plate channel for the case of a hydrodynamically and thermally developing laminar flow. Design/methodology/approach – The conjugate gradient method (CGM) is used to solve the inverse problem. The momentum equations are solved using an in-house computational fluid dynamics (CFD) source code. The energy equations along with the adjoint and sensitivity equations are solved using the finite volume method. Findings – The effects of number of measurements, distribution of measurements and functional form of unknown flux on the accuracy of estimations are investigated in this work. The prediction of boundary flux by the present algorithm is found to be quite reasonable. Originality/value – It is noticed from the literature review that study of inverse problem with hydrodynamically developing flow has not received sufficient attention despite its practical importance. In the present work, a hydrodynamically and thermally developing flow between two parallel plates is considered and unknown transient boundary heat flux at the upper plate of a parallel plate channel is estimated using CGM.
ISSN:0961-5539
1758-6585
DOI:10.1108/HFF-01-2012-0020