Loading…
On the tree-depth of random graphs
Tree-depth is a parameter introduced under several names as a measure of sparsity of a graph. We compute asymptotic values of the tree-depth of a random graph on n vertices where each edge appears independently with probability p. For dense graphs, np→+∞, the tree-depth of a random graph G is aastd(...
Saved in:
Published in: | Discrete Applied Mathematics 2014-05, Vol.168, p.119-126 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3 |
container_end_page | 126 |
container_issue | |
container_start_page | 119 |
container_title | Discrete Applied Mathematics |
container_volume | 168 |
creator | Perarnau, G. Serra, O. |
description | Tree-depth is a parameter introduced under several names as a measure of sparsity of a graph. We compute asymptotic values of the tree-depth of a random graph on n vertices where each edge appears independently with probability p. For dense graphs, np→+∞, the tree-depth of a random graph G is aastd(G)=n−O(n/p). Random graphs with p=c/n, have aaslinear tree-depth when c>1, the tree-depth is Θ(logn) when c=1 and Θ(loglogn) for c1 is derived from the computation of tree-width and provides a more direct proof of a conjecture by Gao on the linearity of tree-width recently proved by Lee, Lee and Oum (2012) [15]. We also show that, for c=1, every width parameter is aasconstant, and that random regular graphs have linear tree-depth. |
doi_str_mv | 10.1016/j.dam.2012.10.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541436546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12004118</els_id><sourcerecordid>1541436546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG_Fk5fWTNKkKZ5k8QsW9qLgLeRjartsP0y6gv_eLOvZ0_AOzzswDyHXQAugIO-2hTd9wSiwlAvK4YQsQFUsl1UFp2SRGJkzUB_n5CLGLaWJBLUgN5shm1vM5oCYe5zmNhubLJjBj332GczUxkty1phdxKu_uSTvT49vq5d8vXl-XT2sc8crPudSOYvgFNTW1lhJUwJXIGwtFZNCVIxDaX0pLdTgJAr0ynpgHizlygjLl-T2eHcK49ce46z7Ljrc7cyA4z5qECWUXIpSJhSOqAtjjAEbPYWuN-FHA9UHH3qrkw998HFYJR-pc3_sYPrhu8Ogo-twcOi7gG7Wfuz-af8CKQNlog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541436546</pqid></control><display><type>article</type><title>On the tree-depth of random graphs</title><source>ScienceDirect Freedom Collection</source><creator>Perarnau, G. ; Serra, O.</creator><creatorcontrib>Perarnau, G. ; Serra, O.</creatorcontrib><description>Tree-depth is a parameter introduced under several names as a measure of sparsity of a graph. We compute asymptotic values of the tree-depth of a random graph on n vertices where each edge appears independently with probability p. For dense graphs, np→+∞, the tree-depth of a random graph G is aastd(G)=n−O(n/p). Random graphs with p=c/n, have aaslinear tree-depth when c>1, the tree-depth is Θ(logn) when c=1 and Θ(loglogn) for c<1. The result for c>1 is derived from the computation of tree-width and provides a more direct proof of a conjecture by Gao on the linearity of tree-width recently proved by Lee, Lee and Oum (2012) [15]. We also show that, for c=1, every width parameter is aasconstant, and that random regular graphs have linear tree-depth.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.10.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Computation ; Graphs ; Linearity ; Mathematical analysis ; Mathematical models ; Names ; Proving ; Random graphs ; Tree-depth ; Tree-width</subject><ispartof>Discrete Applied Mathematics, 2014-05, Vol.168, p.119-126</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3</citedby><cites>FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Perarnau, G.</creatorcontrib><creatorcontrib>Serra, O.</creatorcontrib><title>On the tree-depth of random graphs</title><title>Discrete Applied Mathematics</title><description>Tree-depth is a parameter introduced under several names as a measure of sparsity of a graph. We compute asymptotic values of the tree-depth of a random graph on n vertices where each edge appears independently with probability p. For dense graphs, np→+∞, the tree-depth of a random graph G is aastd(G)=n−O(n/p). Random graphs with p=c/n, have aaslinear tree-depth when c>1, the tree-depth is Θ(logn) when c=1 and Θ(loglogn) for c<1. The result for c>1 is derived from the computation of tree-width and provides a more direct proof of a conjecture by Gao on the linearity of tree-width recently proved by Lee, Lee and Oum (2012) [15]. We also show that, for c=1, every width parameter is aasconstant, and that random regular graphs have linear tree-depth.</description><subject>Asymptotic properties</subject><subject>Computation</subject><subject>Graphs</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Names</subject><subject>Proving</subject><subject>Random graphs</subject><subject>Tree-depth</subject><subject>Tree-width</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG_Fk5fWTNKkKZ5k8QsW9qLgLeRjartsP0y6gv_eLOvZ0_AOzzswDyHXQAugIO-2hTd9wSiwlAvK4YQsQFUsl1UFp2SRGJkzUB_n5CLGLaWJBLUgN5shm1vM5oCYe5zmNhubLJjBj332GczUxkty1phdxKu_uSTvT49vq5d8vXl-XT2sc8crPudSOYvgFNTW1lhJUwJXIGwtFZNCVIxDaX0pLdTgJAr0ynpgHizlygjLl-T2eHcK49ce46z7Ljrc7cyA4z5qECWUXIpSJhSOqAtjjAEbPYWuN-FHA9UHH3qrkw998HFYJR-pc3_sYPrhu8Ogo-twcOi7gG7Wfuz-af8CKQNlog</recordid><startdate>20140511</startdate><enddate>20140511</enddate><creator>Perarnau, G.</creator><creator>Serra, O.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140511</creationdate><title>On the tree-depth of random graphs</title><author>Perarnau, G. ; Serra, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Computation</topic><topic>Graphs</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Names</topic><topic>Proving</topic><topic>Random graphs</topic><topic>Tree-depth</topic><topic>Tree-width</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perarnau, G.</creatorcontrib><creatorcontrib>Serra, O.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perarnau, G.</au><au>Serra, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the tree-depth of random graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-05-11</date><risdate>2014</risdate><volume>168</volume><spage>119</spage><epage>126</epage><pages>119-126</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Tree-depth is a parameter introduced under several names as a measure of sparsity of a graph. We compute asymptotic values of the tree-depth of a random graph on n vertices where each edge appears independently with probability p. For dense graphs, np→+∞, the tree-depth of a random graph G is aastd(G)=n−O(n/p). Random graphs with p=c/n, have aaslinear tree-depth when c>1, the tree-depth is Θ(logn) when c=1 and Θ(loglogn) for c<1. The result for c>1 is derived from the computation of tree-width and provides a more direct proof of a conjecture by Gao on the linearity of tree-width recently proved by Lee, Lee and Oum (2012) [15]. We also show that, for c=1, every width parameter is aasconstant, and that random regular graphs have linear tree-depth.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.10.031</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2014-05, Vol.168, p.119-126 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541436546 |
source | ScienceDirect Freedom Collection |
subjects | Asymptotic properties Computation Graphs Linearity Mathematical analysis Mathematical models Names Proving Random graphs Tree-depth Tree-width |
title | On the tree-depth of random graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20tree-depth%20of%20random%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Perarnau,%20G.&rft.date=2014-05-11&rft.volume=168&rft.spage=119&rft.epage=126&rft.pages=119-126&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.10.031&rft_dat=%3Cproquest_cross%3E1541436546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-68cbe1c819bb9e76a413815b968265572314bd46b191c6e5ed8bd12d1b038a5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1541436546&rft_id=info:pmid/&rfr_iscdi=true |