Loading…
Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite
ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without...
Saved in:
Published in: | Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3 |
container_end_page | 1554 |
container_issue | 11 |
container_start_page | 1545 |
container_title | Journal of polymer science. Part A, Polymer chemistry |
container_volume | 52 |
creator | Mohamadzadeh Moghadam, Mohamad Hasan Sabury, Sina Gudarzi, Mohsen Moazzami Sharif, Farhad |
description | ABSTRACT
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554
Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization. |
doi_str_mv | 10.1002/pola.27147 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541438190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509292336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgex4Nr2pr9gQAQRpj35mmQuy6KrsLReKO1dyGTOdlOzkzGZ1Y7-ebPdtqAXvQokz_PmcN6iOCFwSgDo2RC8OaWScPmimBFomgoEUS-LGSglq5ry61fF65RuAfKbULPizyKaYY09luHOdVi5vtta7MocNG0wut9mdKEvTd-VNk5pNN4_3o2hHGLY4eXa3az9VNqws0f3E-990zvvejy7-eeLTG2GkNyIR8XByviExw_nYfHt44ev80_V8nLxeX6-rCxnICsB3AqlBHR119UMFUpuVzUSkKhatE1Liaw57UC0igJ0hjRtK5ASjgbalh0W7_a5edwfW0yj3rhk0XvTY9gmTQQnnCnSQEbf_Ifehm3s83SaCmhoQxmrn6NIXndNpRI8U-_3lI0hpYgrPUS3MXHSBPSuLb1rS9-3leG3D5EmWeNX0fTWpSeDKt40iqnMkT33y3mcnknUXy6X54_Z1d5xacS7J8fE77qWTAp9dbHQYn5V04ul1NfsL0W9tZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518627854</pqid></control><display><type>article</type><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><source>Wiley</source><creator>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</creator><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</creatorcontrib><description>ABSTRACT
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554
Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.27147</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Ammonium peroxodisulfate ; Aniline ; Applied sciences ; Composites ; Crystal structure ; Crystallinity ; Crystallization ; Diffraction patterns ; electrical conductivity ; Electrical resistivity ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fourier transforms ; Graphene ; graphene oxide ; Infrared radiation ; Nanofibers ; Organic polymers ; Oxidants ; Oxides ; Oxidizing agents ; Physicochemistry of polymers ; polyaniline ; Polyanilines ; Polymer industry, paints, wood ; Polymerization ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Resistivity ; Sheets ; Technology of polymers ; X-ray diffraction</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</citedby><cites>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28499838$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan</creatorcontrib><creatorcontrib>Sabury, Sina</creatorcontrib><creatorcontrib>Gudarzi, Mohsen Moazzami</creatorcontrib><creatorcontrib>Sharif, Farhad</creatorcontrib><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><description>ABSTRACT
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554
Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</description><subject>Ammonium peroxodisulfate</subject><subject>Aniline</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Diffraction patterns</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Infrared radiation</subject><subject>Nanofibers</subject><subject>Organic polymers</subject><subject>Oxidants</subject><subject>Oxides</subject><subject>Oxidizing agents</subject><subject>Physicochemistry of polymers</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Resistivity</subject><subject>Sheets</subject><subject>Technology of polymers</subject><subject>X-ray diffraction</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhgex4Nr2pr9gQAQRpj35mmQuy6KrsLReKO1dyGTOdlOzkzGZ1Y7-ebPdtqAXvQokz_PmcN6iOCFwSgDo2RC8OaWScPmimBFomgoEUS-LGSglq5ry61fF65RuAfKbULPizyKaYY09luHOdVi5vtta7MocNG0wut9mdKEvTd-VNk5pNN4_3o2hHGLY4eXa3az9VNqws0f3E-990zvvejy7-eeLTG2GkNyIR8XByviExw_nYfHt44ev80_V8nLxeX6-rCxnICsB3AqlBHR119UMFUpuVzUSkKhatE1Liaw57UC0igJ0hjRtK5ASjgbalh0W7_a5edwfW0yj3rhk0XvTY9gmTQQnnCnSQEbf_Ifehm3s83SaCmhoQxmrn6NIXndNpRI8U-_3lI0hpYgrPUS3MXHSBPSuLb1rS9-3leG3D5EmWeNX0fTWpSeDKt40iqnMkT33y3mcnknUXy6X54_Z1d5xacS7J8fE77qWTAp9dbHQYn5V04ul1NfsL0W9tZI</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Mohamadzadeh Moghadam, Mohamad Hasan</creator><creator>Sabury, Sina</creator><creator>Gudarzi, Mohsen Moazzami</creator><creator>Sharif, Farhad</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><author>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonium peroxodisulfate</topic><topic>Aniline</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Diffraction patterns</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Infrared radiation</topic><topic>Nanofibers</topic><topic>Organic polymers</topic><topic>Oxidants</topic><topic>Oxides</topic><topic>Oxidizing agents</topic><topic>Physicochemistry of polymers</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Resistivity</topic><topic>Sheets</topic><topic>Technology of polymers</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan</creatorcontrib><creatorcontrib>Sabury, Sina</creatorcontrib><creatorcontrib>Gudarzi, Mohsen Moazzami</creatorcontrib><creatorcontrib>Sharif, Farhad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamadzadeh Moghadam, Mohamad Hasan</au><au>Sabury, Sina</au><au>Gudarzi, Mohsen Moazzami</au><au>Sharif, Farhad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>1545</spage><epage>1554</epage><pages>1545-1554</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>ABSTRACT
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554
Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pola.27147</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-624X |
ispartof | Journal of polymer science. Part A, Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554 |
issn | 0887-624X 1099-0518 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541438190 |
source | Wiley |
subjects | Ammonium peroxodisulfate Aniline Applied sciences Composites Crystal structure Crystallinity Crystallization Diffraction patterns electrical conductivity Electrical resistivity Exact sciences and technology Forms of application and semi-finished materials Fourier transforms Graphene graphene oxide Infrared radiation Nanofibers Organic polymers Oxidants Oxides Oxidizing agents Physicochemistry of polymers polyaniline Polyanilines Polymer industry, paints, wood Polymerization Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Resistivity Sheets Technology of polymers X-ray diffraction |
title | Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20oxide-induced%20polymerization%20and%20crystallization%20to%20produce%20highly%20conductive%20polyaniline/graphene%20oxide%20composite&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Mohamadzadeh%20Moghadam,%20Mohamad%20Hasan&rft.date=2014-06-01&rft.volume=52&rft.issue=11&rft.spage=1545&rft.epage=1554&rft.pages=1545-1554&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.27147&rft_dat=%3Cproquest_cross%3E2509292336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1518627854&rft_id=info:pmid/&rfr_iscdi=true |