Loading…

Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite

ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554
Main Authors: Mohamadzadeh Moghadam, Mohamad Hasan, Sabury, Sina, Gudarzi, Mohsen Moazzami, Sharif, Farhad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3
cites cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3
container_end_page 1554
container_issue 11
container_start_page 1545
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 52
creator Mohamadzadeh Moghadam, Mohamad Hasan
Sabury, Sina
Gudarzi, Mohsen Moazzami
Sharif, Farhad
description ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554 Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.
doi_str_mv 10.1002/pola.27147
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541438190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509292336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgex4Nr2pr9gQAQRpj35mmQuy6KrsLReKO1dyGTOdlOzkzGZ1Y7-ebPdtqAXvQokz_PmcN6iOCFwSgDo2RC8OaWScPmimBFomgoEUS-LGSglq5ry61fF65RuAfKbULPizyKaYY09luHOdVi5vtta7MocNG0wut9mdKEvTd-VNk5pNN4_3o2hHGLY4eXa3az9VNqws0f3E-990zvvejy7-eeLTG2GkNyIR8XByviExw_nYfHt44ev80_V8nLxeX6-rCxnICsB3AqlBHR119UMFUpuVzUSkKhatE1Liaw57UC0igJ0hjRtK5ASjgbalh0W7_a5edwfW0yj3rhk0XvTY9gmTQQnnCnSQEbf_Ifehm3s83SaCmhoQxmrn6NIXndNpRI8U-_3lI0hpYgrPUS3MXHSBPSuLb1rS9-3leG3D5EmWeNX0fTWpSeDKt40iqnMkT33y3mcnknUXy6X54_Z1d5xacS7J8fE77qWTAp9dbHQYn5V04ul1NfsL0W9tZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518627854</pqid></control><display><type>article</type><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><source>Wiley</source><creator>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</creator><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</creatorcontrib><description>ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554 Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.27147</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Ammonium peroxodisulfate ; Aniline ; Applied sciences ; Composites ; Crystal structure ; Crystallinity ; Crystallization ; Diffraction patterns ; electrical conductivity ; Electrical resistivity ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fourier transforms ; Graphene ; graphene oxide ; Infrared radiation ; Nanofibers ; Organic polymers ; Oxidants ; Oxides ; Oxidizing agents ; Physicochemistry of polymers ; polyaniline ; Polyanilines ; Polymer industry, paints, wood ; Polymerization ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Resistivity ; Sheets ; Technology of polymers ; X-ray diffraction</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</citedby><cites>FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28499838$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan</creatorcontrib><creatorcontrib>Sabury, Sina</creatorcontrib><creatorcontrib>Gudarzi, Mohsen Moazzami</creatorcontrib><creatorcontrib>Sharif, Farhad</creatorcontrib><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><description>ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554 Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</description><subject>Ammonium peroxodisulfate</subject><subject>Aniline</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Diffraction patterns</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Infrared radiation</subject><subject>Nanofibers</subject><subject>Organic polymers</subject><subject>Oxidants</subject><subject>Oxides</subject><subject>Oxidizing agents</subject><subject>Physicochemistry of polymers</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Resistivity</subject><subject>Sheets</subject><subject>Technology of polymers</subject><subject>X-ray diffraction</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhgex4Nr2pr9gQAQRpj35mmQuy6KrsLReKO1dyGTOdlOzkzGZ1Y7-ebPdtqAXvQokz_PmcN6iOCFwSgDo2RC8OaWScPmimBFomgoEUS-LGSglq5ry61fF65RuAfKbULPizyKaYY09luHOdVi5vtta7MocNG0wut9mdKEvTd-VNk5pNN4_3o2hHGLY4eXa3az9VNqws0f3E-990zvvejy7-eeLTG2GkNyIR8XByviExw_nYfHt44ev80_V8nLxeX6-rCxnICsB3AqlBHR119UMFUpuVzUSkKhatE1Liaw57UC0igJ0hjRtK5ASjgbalh0W7_a5edwfW0yj3rhk0XvTY9gmTQQnnCnSQEbf_Ifehm3s83SaCmhoQxmrn6NIXndNpRI8U-_3lI0hpYgrPUS3MXHSBPSuLb1rS9-3leG3D5EmWeNX0fTWpSeDKt40iqnMkT33y3mcnknUXy6X54_Z1d5xacS7J8fE77qWTAp9dbHQYn5V04ul1NfsL0W9tZI</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Mohamadzadeh Moghadam, Mohamad Hasan</creator><creator>Sabury, Sina</creator><creator>Gudarzi, Mohsen Moazzami</creator><creator>Sharif, Farhad</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</title><author>Mohamadzadeh Moghadam, Mohamad Hasan ; Sabury, Sina ; Gudarzi, Mohsen Moazzami ; Sharif, Farhad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonium peroxodisulfate</topic><topic>Aniline</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Diffraction patterns</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Infrared radiation</topic><topic>Nanofibers</topic><topic>Organic polymers</topic><topic>Oxidants</topic><topic>Oxides</topic><topic>Oxidizing agents</topic><topic>Physicochemistry of polymers</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Resistivity</topic><topic>Sheets</topic><topic>Technology of polymers</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamadzadeh Moghadam, Mohamad Hasan</creatorcontrib><creatorcontrib>Sabury, Sina</creatorcontrib><creatorcontrib>Gudarzi, Mohsen Moazzami</creatorcontrib><creatorcontrib>Sharif, Farhad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamadzadeh Moghadam, Mohamad Hasan</au><au>Sabury, Sina</au><au>Gudarzi, Mohsen Moazzami</au><au>Sharif, Farhad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. Part A: Polym. Chem</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>1545</spage><epage>1554</epage><pages>1545-1554</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>ABSTRACT Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m−1, compared with 20.3 S m−1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1545–1554 Graphene Oxide assisted polymerization of aniline in the absence of a conventional oxidant leads to the formation of a chemically grafted morphology. Polyaniline is attached to the partially reduced graphene oxide sheet, despite conventional ammonium persulfate assisted polymerization of aniline in the presence of graphene oxide. The highly crystalline structure of the graphene oxide–polyaniline composite leads to a high electrical conductivity which is 10 times higher than graphene oxide–polyaniline obtained by ammonium persulfate assisted polymerization.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pola.27147</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2014-06, Vol.52 (11), p.1545-1554
issn 0887-624X
1099-0518
language eng
recordid cdi_proquest_miscellaneous_1541438190
source Wiley
subjects Ammonium peroxodisulfate
Aniline
Applied sciences
Composites
Crystal structure
Crystallinity
Crystallization
Diffraction patterns
electrical conductivity
Electrical resistivity
Exact sciences and technology
Forms of application and semi-finished materials
Fourier transforms
Graphene
graphene oxide
Infrared radiation
Nanofibers
Organic polymers
Oxidants
Oxides
Oxidizing agents
Physicochemistry of polymers
polyaniline
Polyanilines
Polymer industry, paints, wood
Polymerization
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Resistivity
Sheets
Technology of polymers
X-ray diffraction
title Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20oxide-induced%20polymerization%20and%20crystallization%20to%20produce%20highly%20conductive%20polyaniline/graphene%20oxide%20composite&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Mohamadzadeh%20Moghadam,%20Mohamad%20Hasan&rft.date=2014-06-01&rft.volume=52&rft.issue=11&rft.spage=1545&rft.epage=1554&rft.pages=1545-1554&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.27147&rft_dat=%3Cproquest_cross%3E2509292336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4307-504c58850d6dd63e8e74cf6e107e8bec9b217642d05b8200da19bb5e214ea0bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1518627854&rft_id=info:pmid/&rfr_iscdi=true