Loading…

Bounded matrix factorization for recommender system

Matrix factorization has been widely utilized as a latent factor model for solving the recommender system problem using collaborative filtering. For a recommender system, all the ratings in the rating matrix are bounded within a pre-determined range. In this paper, we propose a new improved matrix f...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems 2014-06, Vol.39 (3), p.491-511
Main Authors: Kannan, Ramakrishnan, Ishteva, Mariya, Park, Haesun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373
cites cdi_FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373
container_end_page 511
container_issue 3
container_start_page 491
container_title Knowledge and information systems
container_volume 39
creator Kannan, Ramakrishnan
Ishteva, Mariya
Park, Haesun
description Matrix factorization has been widely utilized as a latent factor model for solving the recommender system problem using collaborative filtering. For a recommender system, all the ratings in the rating matrix are bounded within a pre-determined range. In this paper, we propose a new improved matrix factorization approach for such a rating matrix, called Bounded Matrix Factorization (BMF), which imposes a lower and an upper bound on every estimated missing element of the rating matrix. We present an efficient algorithm to solve BMF based on the block coordinate descent method. We show that our algorithm is scalable for large matrices with missing elements on multicore systems with low memory. We present substantial experimental results illustrating that the proposed method outperforms the state of the art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and Bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating and Netflix.
doi_str_mv 10.1007/s10115-013-0710-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541444201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541444201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FEbxUZ_LRtEdd_IIFL3oO2TSRLm2zJi24_nqzdBERPE1gnvdh8hJyjnCNAPImIiCKHJDlIBFyekBmQLHKGWJxuH8jk_KYnMS4BkBZIM4Iu_NjX9s66_QQms_MaTP40HzpofF95nzIgjW-62yCQha3cbDdKTlyuo32bD_n5O3h_nXxlC9fHp8Xt8vccC6G3ApGq7KwqDk4WqyoFdYgaFkJZhyVDmp0q7pmwqGumRQSqURTFAJSkEk2J1eTdxP8x2jjoLomGtu2urd-jAoFR845TZ-ek4s_6NqPoU_XJYrSsmBFBYnCiTLBxxisU5vQdDpsFYLa1aimGlUyql2NiqbM5d6so9GtC7o3TfwJ0pJLWpY7N524mFb9uw2_LvhX_g1Mr3-u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522863690</pqid></control><display><type>article</type><title>Bounded matrix factorization for recommender system</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Kannan, Ramakrishnan ; Ishteva, Mariya ; Park, Haesun</creator><creatorcontrib>Kannan, Ramakrishnan ; Ishteva, Mariya ; Park, Haesun</creatorcontrib><description>Matrix factorization has been widely utilized as a latent factor model for solving the recommender system problem using collaborative filtering. For a recommender system, all the ratings in the rating matrix are bounded within a pre-determined range. In this paper, we propose a new improved matrix factorization approach for such a rating matrix, called Bounded Matrix Factorization (BMF), which imposes a lower and an upper bound on every estimated missing element of the rating matrix. We present an efficient algorithm to solve BMF based on the block coordinate descent method. We show that our algorithm is scalable for large matrices with missing elements on multicore systems with low memory. We present substantial experimental results illustrating that the proposed method outperforms the state of the art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and Bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating and Netflix.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-013-0710-2</identifier><identifier>CODEN: KISNCR</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Artificial intelligence ; Collaboration ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Dating techniques ; Descent ; Exact sciences and technology ; Factorization ; Information Storage and Retrieval ; Information systems ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Learning and adaptive systems ; Least squares method ; Machine learning ; Mathematical models ; Principal components analysis ; Ratings ; Ratings &amp; rankings ; Recommender systems ; Regular Paper ; Semantics ; Software ; Studies</subject><ispartof>Knowledge and information systems, 2014-06, Vol.39 (3), p.491-511</ispartof><rights>Springer-Verlag London 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag London 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373</citedby><cites>FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1522863690/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1522863690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74642</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28472880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kannan, Ramakrishnan</creatorcontrib><creatorcontrib>Ishteva, Mariya</creatorcontrib><creatorcontrib>Park, Haesun</creatorcontrib><title>Bounded matrix factorization for recommender system</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Matrix factorization has been widely utilized as a latent factor model for solving the recommender system problem using collaborative filtering. For a recommender system, all the ratings in the rating matrix are bounded within a pre-determined range. In this paper, we propose a new improved matrix factorization approach for such a rating matrix, called Bounded Matrix Factorization (BMF), which imposes a lower and an upper bound on every estimated missing element of the rating matrix. We present an efficient algorithm to solve BMF based on the block coordinate descent method. We show that our algorithm is scalable for large matrices with missing elements on multicore systems with low memory. We present substantial experimental results illustrating that the proposed method outperforms the state of the art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and Bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating and Netflix.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Dating techniques</subject><subject>Descent</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Information Storage and Retrieval</subject><subject>Information systems</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Learning and adaptive systems</subject><subject>Least squares method</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Principal components analysis</subject><subject>Ratings</subject><subject>Ratings &amp; rankings</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Software</subject><subject>Studies</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FEbxUZ_LRtEdd_IIFL3oO2TSRLm2zJi24_nqzdBERPE1gnvdh8hJyjnCNAPImIiCKHJDlIBFyekBmQLHKGWJxuH8jk_KYnMS4BkBZIM4Iu_NjX9s66_QQms_MaTP40HzpofF95nzIgjW-62yCQha3cbDdKTlyuo32bD_n5O3h_nXxlC9fHp8Xt8vccC6G3ApGq7KwqDk4WqyoFdYgaFkJZhyVDmp0q7pmwqGumRQSqURTFAJSkEk2J1eTdxP8x2jjoLomGtu2urd-jAoFR845TZ-ek4s_6NqPoU_XJYrSsmBFBYnCiTLBxxisU5vQdDpsFYLa1aimGlUyql2NiqbM5d6so9GtC7o3TfwJ0pJLWpY7N524mFb9uw2_LvhX_g1Mr3-u</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kannan, Ramakrishnan</creator><creator>Ishteva, Mariya</creator><creator>Park, Haesun</creator><general>Springer London</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>Bounded matrix factorization for recommender system</title><author>Kannan, Ramakrishnan ; Ishteva, Mariya ; Park, Haesun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Dating techniques</topic><topic>Descent</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Information Storage and Retrieval</topic><topic>Information systems</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Learning and adaptive systems</topic><topic>Least squares method</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Principal components analysis</topic><topic>Ratings</topic><topic>Ratings &amp; rankings</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, Ramakrishnan</creatorcontrib><creatorcontrib>Ishteva, Mariya</creatorcontrib><creatorcontrib>Park, Haesun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, Ramakrishnan</au><au>Ishteva, Mariya</au><au>Park, Haesun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded matrix factorization for recommender system</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>39</volume><issue>3</issue><spage>491</spage><epage>511</epage><pages>491-511</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><coden>KISNCR</coden><abstract>Matrix factorization has been widely utilized as a latent factor model for solving the recommender system problem using collaborative filtering. For a recommender system, all the ratings in the rating matrix are bounded within a pre-determined range. In this paper, we propose a new improved matrix factorization approach for such a rating matrix, called Bounded Matrix Factorization (BMF), which imposes a lower and an upper bound on every estimated missing element of the rating matrix. We present an efficient algorithm to solve BMF based on the block coordinate descent method. We show that our algorithm is scalable for large matrices with missing elements on multicore systems with low memory. We present substantial experimental results illustrating that the proposed method outperforms the state of the art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and Bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating and Netflix.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-013-0710-2</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2014-06, Vol.39 (3), p.491-511
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_miscellaneous_1541444201
source ABI/INFORM global; Springer Nature
subjects Algorithms
Applied sciences
Approximation
Artificial intelligence
Collaboration
Computer Science
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data mining
Data Mining and Knowledge Discovery
Database Management
Dating techniques
Descent
Exact sciences and technology
Factorization
Information Storage and Retrieval
Information systems
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Learning and adaptive systems
Least squares method
Machine learning
Mathematical models
Principal components analysis
Ratings
Ratings & rankings
Recommender systems
Regular Paper
Semantics
Software
Studies
title Bounded matrix factorization for recommender system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20matrix%20factorization%20for%20recommender%20system&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Kannan,%20Ramakrishnan&rft.date=2014-06-01&rft.volume=39&rft.issue=3&rft.spage=491&rft.epage=511&rft.pages=491-511&rft.issn=0219-1377&rft.eissn=0219-3116&rft.coden=KISNCR&rft_id=info:doi/10.1007/s10115-013-0710-2&rft_dat=%3Cproquest_cross%3E1541444201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-e532986e1a40f26b2e5ec10a7953cf27f0d1fbdd35f1ad37571271c6650329373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1522863690&rft_id=info:pmid/&rfr_iscdi=true