Loading…

Anonymity preserving sequential pattern mining

The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential da...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence and law 2014-06, Vol.22 (2), p.141-173
Main Authors: Monreale, Anna, Pedreschi, Dino, Pensa, Ruggero G., Pinelli, Fabio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3
cites cdi_FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3
container_end_page 173
container_issue 2
container_start_page 141
container_title Artificial intelligence and law
container_volume 22
creator Monreale, Anna
Pedreschi, Dino
Pensa, Ruggero G.
Pinelli, Fabio
description The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k -anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k -anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k -anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.
doi_str_mv 10.1007/s10506-014-9154-6
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541990802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712223911</galeid><sourcerecordid>A712223911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3</originalsourceid><addsrcrecordid>eNqNkU1LAzEURYMoWKs_wF3BjZupL1-TZFmKX1Bwo-uQTt-UlJlMTaZC_70p46KKgmQRSM553Mcl5JrClAKou0RBQlkAFYWhUhTlCRlRqVihuWanZASGiUKLkp-Ti5Q2AGBKw0dkOgtd2Le-30-2ERPGDx_Wk4TvOwy9d81k6_oeY5i0PuSfS3JWuybh1dc9Jm8P96_zp2Lx8vg8ny2KSoLqC-GWKFWtOWc1dxqlBmQcnJBmiTkeKCG55rKUaiXRaWBCcbOiSoMoV6biY3I7zN3GLkdJvW19qrBpXMBul2yeQY2BLP4LFVxJwzN68wPddLsY8iKZoloaLfkRtXYNWh_qro-uOgy1M0UZY9xQmqnpL1Q-K2x91QWsfX7_JtBBqGKXUsTabqNvXdxbCvbQoR06tLlDe-jQltlhg5MyG9YYjwL_KX0CcfmZ5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518598533</pqid></control><display><type>article</type><title>Anonymity preserving sequential pattern mining</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library &amp; Information Science Collection</source><source>Springer Link</source><creator>Monreale, Anna ; Pedreschi, Dino ; Pensa, Ruggero G. ; Pinelli, Fabio</creator><creatorcontrib>Monreale, Anna ; Pedreschi, Dino ; Pensa, Ruggero G. ; Pinelli, Fabio</creatorcontrib><description>The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k -anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k -anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k -anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.</description><identifier>ISSN: 0924-8463</identifier><identifier>EISSN: 1572-8382</identifier><identifier>DOI: 10.1007/s10506-014-9154-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer privacy ; Computer Science ; Data mining ; Information Storage and Retrieval ; Intellectual Property ; International ; IT Law ; Law ; Legal Aspects of Computing ; Location data ; Mathematical analysis ; Media Law ; Military technology ; Pattern analysis ; Pattern recognition ; Personal information ; Philosophy of Law ; Position (location) ; Preserves ; Privacy ; Privacy, Right of ; Statistics ; Studies ; Transaction logs</subject><ispartof>Artificial intelligence and law, 2014-06, Vol.22 (2), p.141-173</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3</citedby><cites>FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1518598533/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1518598533?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21360,21373,27282,27901,27902,33588,33589,33883,33884,34112,34113,43709,43868,73964,74152</link.rule.ids></links><search><creatorcontrib>Monreale, Anna</creatorcontrib><creatorcontrib>Pedreschi, Dino</creatorcontrib><creatorcontrib>Pensa, Ruggero G.</creatorcontrib><creatorcontrib>Pinelli, Fabio</creatorcontrib><title>Anonymity preserving sequential pattern mining</title><title>Artificial intelligence and law</title><addtitle>Artif Intell Law</addtitle><description>The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k -anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k -anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k -anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.</description><subject>Artificial Intelligence</subject><subject>Computer privacy</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Information Storage and Retrieval</subject><subject>Intellectual Property</subject><subject>International</subject><subject>IT Law</subject><subject>Law</subject><subject>Legal Aspects of Computing</subject><subject>Location data</subject><subject>Mathematical analysis</subject><subject>Media Law</subject><subject>Military technology</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Personal information</subject><subject>Philosophy of Law</subject><subject>Position (location)</subject><subject>Preserves</subject><subject>Privacy</subject><subject>Privacy, Right of</subject><subject>Statistics</subject><subject>Studies</subject><subject>Transaction logs</subject><issn>0924-8463</issn><issn>1572-8382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M1O</sourceid><recordid>eNqNkU1LAzEURYMoWKs_wF3BjZupL1-TZFmKX1Bwo-uQTt-UlJlMTaZC_70p46KKgmQRSM553Mcl5JrClAKou0RBQlkAFYWhUhTlCRlRqVihuWanZASGiUKLkp-Ti5Q2AGBKw0dkOgtd2Le-30-2ERPGDx_Wk4TvOwy9d81k6_oeY5i0PuSfS3JWuybh1dc9Jm8P96_zp2Lx8vg8ny2KSoLqC-GWKFWtOWc1dxqlBmQcnJBmiTkeKCG55rKUaiXRaWBCcbOiSoMoV6biY3I7zN3GLkdJvW19qrBpXMBul2yeQY2BLP4LFVxJwzN68wPddLsY8iKZoloaLfkRtXYNWh_qro-uOgy1M0UZY9xQmqnpL1Q-K2x91QWsfX7_JtBBqGKXUsTabqNvXdxbCvbQoR06tLlDe-jQltlhg5MyG9YYjwL_KX0CcfmZ5g</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Monreale, Anna</creator><creator>Pedreschi, Dino</creator><creator>Pensa, Ruggero G.</creator><creator>Pinelli, Fabio</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ILT</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>F28</scope><scope>FR3</scope><scope>8BP</scope></search><sort><creationdate>20140601</creationdate><title>Anonymity preserving sequential pattern mining</title><author>Monreale, Anna ; Pedreschi, Dino ; Pensa, Ruggero G. ; Pinelli, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Computer privacy</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Information Storage and Retrieval</topic><topic>Intellectual Property</topic><topic>International</topic><topic>IT Law</topic><topic>Law</topic><topic>Legal Aspects of Computing</topic><topic>Location data</topic><topic>Mathematical analysis</topic><topic>Media Law</topic><topic>Military technology</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Personal information</topic><topic>Philosophy of Law</topic><topic>Position (location)</topic><topic>Preserves</topic><topic>Privacy</topic><topic>Privacy, Right of</topic><topic>Statistics</topic><topic>Studies</topic><topic>Transaction logs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monreale, Anna</creatorcontrib><creatorcontrib>Pedreschi, Dino</creatorcontrib><creatorcontrib>Pensa, Ruggero G.</creatorcontrib><creatorcontrib>Pinelli, Fabio</creatorcontrib><collection>CrossRef</collection><collection>LegalTrac</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><jtitle>Artificial intelligence and law</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monreale, Anna</au><au>Pedreschi, Dino</au><au>Pensa, Ruggero G.</au><au>Pinelli, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anonymity preserving sequential pattern mining</atitle><jtitle>Artificial intelligence and law</jtitle><stitle>Artif Intell Law</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>22</volume><issue>2</issue><spage>141</spage><epage>173</epage><pages>141-173</pages><issn>0924-8463</issn><eissn>1572-8382</eissn><abstract>The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k -anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k -anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k -anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10506-014-9154-6</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-8463
ispartof Artificial intelligence and law, 2014-06, Vol.22 (2), p.141-173
issn 0924-8463
1572-8382
language eng
recordid cdi_proquest_miscellaneous_1541990802
source Library & Information Science Abstracts (LISA); Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection; Springer Link
subjects Artificial Intelligence
Computer privacy
Computer Science
Data mining
Information Storage and Retrieval
Intellectual Property
International
IT Law
Law
Legal Aspects of Computing
Location data
Mathematical analysis
Media Law
Military technology
Pattern analysis
Pattern recognition
Personal information
Philosophy of Law
Position (location)
Preserves
Privacy
Privacy, Right of
Statistics
Studies
Transaction logs
title Anonymity preserving sequential pattern mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anonymity%20preserving%20sequential%20pattern%20mining&rft.jtitle=Artificial%20intelligence%20and%20law&rft.au=Monreale,%20Anna&rft.date=2014-06-01&rft.volume=22&rft.issue=2&rft.spage=141&rft.epage=173&rft.pages=141-173&rft.issn=0924-8463&rft.eissn=1572-8382&rft_id=info:doi/10.1007/s10506-014-9154-6&rft_dat=%3Cgale_proqu%3EA712223911%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-4abe57f8332f3a8e580e230a459be15407453835657d5ea8024739d178046d9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1518598533&rft_id=info:pmid/&rft_galeid=A712223911&rfr_iscdi=true