Loading…

Self-distortion compensation of spatial light modulator under temperature-varying conditions

Conventional methods of compensating for self-distortion in liquid-crystal-on-silicon spatial light modulators (LCOS-SLM) are based on aberration correction, where the wavefront of the incident beam is modulated to compensate for aberrations caused by the imperfect optical flatness of the LCOS-SLM s...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2014-06, Vol.22 (13), p.16087-16098
Main Authors: Takiguchi, Yu, Otsu, Tomoko, Inoue, Takashi, Toyoda, Haruyoshi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional methods of compensating for self-distortion in liquid-crystal-on-silicon spatial light modulators (LCOS-SLM) are based on aberration correction, where the wavefront of the incident beam is modulated to compensate for aberrations caused by the imperfect optical flatness of the LCOS-SLM surface. However, the phase distribution of an LCOS-SLM varies with changes in ambient temperature and requires additional correction. We report a novel phase compensation method under temperature-varying conditions based on an orthonormal Legendre series expansion of the phase distribution. We investigated the temperature dependency by controlling the ambient temperature with an incubator and successfully corrected for self-distortion in a temperature range of 20 °C to 50 °C. Our approach has the potential to be adopted in tight-focusing applications which require wavefront modulation with very high accuracy.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.22.016087