Loading…

Melting and phase transitions of nitrogen under high pressures and temperatures

Dense nitrogen exhibits fascinating molecular and extended polymorphs as well as an anomalous melt maximum at high temperatures. However, the exact solid-liquid phase boundary is still the subject of debate, as both creating and probing hot dense nitrogen, solid and fluid alike, poses unique experim...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2014-06, Vol.140 (24), p.244510-244510
Main Authors: Tomasino, Dane, Jenei, Zsolt, Evans, William, Yoo, Choong-Shik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dense nitrogen exhibits fascinating molecular and extended polymorphs as well as an anomalous melt maximum at high temperatures. However, the exact solid-liquid phase boundary is still the subject of debate, as both creating and probing hot dense nitrogen, solid and fluid alike, poses unique experimental challenges. Raman studies of nitrogen were performed to investigate the melting curve and solid-solid phase transitions in the pressure-temperature range of 25 to 103 GPa and 300 to 2000 K. The solid-liquid phase boundary has been probed with time-resolved Raman spectroscopy on ramp heated nitrogen in diamond anvil cell (DAC), showing a melting maximum at 73 GPa and 1690 K. The solid-solid phase boundaries have been measured with spatially resolved micro-confocal Raman spectroscopy on resistively heated DAC, probing the δ-ɛ phase line to 47 GPa and 914 K. At higher pressures the θ-phase was produced upon a repeated thermal heating of the ζ-phase, yet no evidence was found for the ι-phase. Hence, the present results signify the path dependence of dense nitrogen phases and provide new constraints for the phase diagram.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4885724