Loading…

Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions

Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitati...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2014-07, Vol.511 (7507), p.65-69
Main Authors: Lee, Jongwon, Tymchenko, Mykhailo, Argyropoulos, Christos, Chen, Pai-Yen, Lu, Feng, Demmerle, Frederic, Boehm, Gerhard, Amann, Markus-Christian, Alù, Andrea, Belkin, Mikhail A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93
cites cdi_FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93
container_end_page 69
container_issue 7507
container_start_page 65
container_title Nature (London)
container_volume 511
creator Lee, Jongwon
Tymchenko, Mykhailo
Argyropoulos, Christos
Chen, Pai-Yen
Lu, Feng
Demmerle, Frederic
Boehm, Gerhard
Amann, Markus-Christian
Alù, Andrea
Belkin, Mikhail A.
description Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitation can be lifted, opening a new path towards ultrathin planarized components with large nonlinear response. A new angle on nonlinear optics Multiple-quantum-well semiconductor heterostructures have been engineered to generate useful nonlinear optical responses that far exceed those of traditional nonlinear optical materials. But their range of applicability is geometrically limited as they require that the incident light be polarized perpendicular to the semiconductor layers. Jongwon Lee et al . now show that, by coupling a plasmonic metasurface to the semiconductor heterostructure, this geometrical limitation can be removed, thereby lifting the orientation restrictions on the use of these nonlinear optical elements. Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems—but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers 1 , 2 , 3 , 4 , 5 , 6 , 7 . In a different context, plasmonic metasurfaces (thin conductor–dielectric composite materials) have been proposed as a way of strongly enhancing light–matter interaction and realizing ultrathin planarized devices with exotic wave properties 8 , 9 , 10 , 11 . Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10 4 picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far 12 , 13 , 14 , 15 . The proposed structures can act as ultrathin highly nonlinear optical elements that enabl
doi_str_mv 10.1038/nature13455
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1543281857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A374101007</galeid><sourcerecordid>A374101007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93</originalsourceid><addsrcrecordid>eNp90s1rFDEYB-BBFLutnrzLYC8VnZrPSea4LFoLRUEreguZzJslZSaZJjOg_71ZWnVXRskhJHnyywdvUTzD6BwjKt94Pc0RMGWcPyhWmIm6YrUUD4sVQkRWSNL6qDhO6QYhxLFgj4sjwpoGCVavim8XTvup9MH3zoOOZYQ0Bp-gtDEM5djrNATvTDnApNMcrTaQShPmsYeunELp_AQxzW2rfR5H7ZObXA54Ujyyuk_w9L4_Kb68e3u9eV9dfby43KyvKpPvOFWUdlhiTQRBtGGWWMK5IES3VgreWehq0XSNRBJ3zLTEtNjYjgJDhHKOoaEnxdld7hjD7QxpUoNLBvpeewhzUpgzSiSWXGR6-he9CXP0-XYK16ThktcN-a_ijHEictoftdU9KOdtyG83u6PVmgqGEUZod2K1oLbgIeo-eLAuTx_4FwvejO5W7aPzBZRbB4Mzi6kvDzZkM8H3aavnlNTl50-H9tW_7fr66-bDojYxpBTBqjG6QccfCiO1K061V5xZP7__2bkdoPttf1VjBq_vQMpLfgtx7-sX8n4CIsvpvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544527818</pqid></control><display><type>article</type><title>Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions</title><source>Nature Journals Online</source><creator>Lee, Jongwon ; Tymchenko, Mykhailo ; Argyropoulos, Christos ; Chen, Pai-Yen ; Lu, Feng ; Demmerle, Frederic ; Boehm, Gerhard ; Amann, Markus-Christian ; Alù, Andrea ; Belkin, Mikhail A.</creator><creatorcontrib>Lee, Jongwon ; Tymchenko, Mykhailo ; Argyropoulos, Christos ; Chen, Pai-Yen ; Lu, Feng ; Demmerle, Frederic ; Boehm, Gerhard ; Amann, Markus-Christian ; Alù, Andrea ; Belkin, Mikhail A.</creatorcontrib><description>Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitation can be lifted, opening a new path towards ultrathin planarized components with large nonlinear response. A new angle on nonlinear optics Multiple-quantum-well semiconductor heterostructures have been engineered to generate useful nonlinear optical responses that far exceed those of traditional nonlinear optical materials. But their range of applicability is geometrically limited as they require that the incident light be polarized perpendicular to the semiconductor layers. Jongwon Lee et al . now show that, by coupling a plasmonic metasurface to the semiconductor heterostructure, this geometrical limitation can be removed, thereby lifting the orientation restrictions on the use of these nonlinear optical elements. Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems—but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers 1 , 2 , 3 , 4 , 5 , 6 , 7 . In a different context, plasmonic metasurfaces (thin conductor–dielectric composite materials) have been proposed as a way of strongly enhancing light–matter interaction and realizing ultrathin planarized devices with exotic wave properties 8 , 9 , 10 , 11 . Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10 4 picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far 12 , 13 , 14 , 15 . The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13455</identifier><identifier>PMID: 24990746</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 147/135 ; 639/624/399/1015 ; 639/624/400/2797 ; 639/624/400/385 ; Asymmetry ; Composite materials ; Design ; Electric properties ; Humanities and Social Sciences ; letter ; Methods ; Molecular beam epitaxy ; multidisciplinary ; Quantum wells ; Science ; Symmetry</subject><ispartof>Nature (London), 2014-07, Vol.511 (7507), p.65-69</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 3, 2014</rights><rights>Copyright Nature Publishing Group Jul 3, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93</citedby><cites>FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24990746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Demmerle, Frederic</creatorcontrib><creatorcontrib>Boehm, Gerhard</creatorcontrib><creatorcontrib>Amann, Markus-Christian</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Belkin, Mikhail A.</creatorcontrib><title>Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitation can be lifted, opening a new path towards ultrathin planarized components with large nonlinear response. A new angle on nonlinear optics Multiple-quantum-well semiconductor heterostructures have been engineered to generate useful nonlinear optical responses that far exceed those of traditional nonlinear optical materials. But their range of applicability is geometrically limited as they require that the incident light be polarized perpendicular to the semiconductor layers. Jongwon Lee et al . now show that, by coupling a plasmonic metasurface to the semiconductor heterostructure, this geometrical limitation can be removed, thereby lifting the orientation restrictions on the use of these nonlinear optical elements. Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems—but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers 1 , 2 , 3 , 4 , 5 , 6 , 7 . In a different context, plasmonic metasurfaces (thin conductor–dielectric composite materials) have been proposed as a way of strongly enhancing light–matter interaction and realizing ultrathin planarized devices with exotic wave properties 8 , 9 , 10 , 11 . Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10 4 picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far 12 , 13 , 14 , 15 . The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.</description><subject>140/125</subject><subject>142/126</subject><subject>147/135</subject><subject>639/624/399/1015</subject><subject>639/624/400/2797</subject><subject>639/624/400/385</subject><subject>Asymmetry</subject><subject>Composite materials</subject><subject>Design</subject><subject>Electric properties</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Methods</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Quantum wells</subject><subject>Science</subject><subject>Symmetry</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90s1rFDEYB-BBFLutnrzLYC8VnZrPSea4LFoLRUEreguZzJslZSaZJjOg_71ZWnVXRskhJHnyywdvUTzD6BwjKt94Pc0RMGWcPyhWmIm6YrUUD4sVQkRWSNL6qDhO6QYhxLFgj4sjwpoGCVavim8XTvup9MH3zoOOZYQ0Bp-gtDEM5djrNATvTDnApNMcrTaQShPmsYeunELp_AQxzW2rfR5H7ZObXA54Ujyyuk_w9L4_Kb68e3u9eV9dfby43KyvKpPvOFWUdlhiTQRBtGGWWMK5IES3VgreWehq0XSNRBJ3zLTEtNjYjgJDhHKOoaEnxdld7hjD7QxpUoNLBvpeewhzUpgzSiSWXGR6-he9CXP0-XYK16ThktcN-a_ijHEictoftdU9KOdtyG83u6PVmgqGEUZod2K1oLbgIeo-eLAuTx_4FwvejO5W7aPzBZRbB4Mzi6kvDzZkM8H3aavnlNTl50-H9tW_7fr66-bDojYxpBTBqjG6QccfCiO1K061V5xZP7__2bkdoPttf1VjBq_vQMpLfgtx7-sX8n4CIsvpvA</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Lee, Jongwon</creator><creator>Tymchenko, Mykhailo</creator><creator>Argyropoulos, Christos</creator><creator>Chen, Pai-Yen</creator><creator>Lu, Feng</creator><creator>Demmerle, Frederic</creator><creator>Boehm, Gerhard</creator><creator>Amann, Markus-Christian</creator><creator>Alù, Andrea</creator><creator>Belkin, Mikhail A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140703</creationdate><title>Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions</title><author>Lee, Jongwon ; Tymchenko, Mykhailo ; Argyropoulos, Christos ; Chen, Pai-Yen ; Lu, Feng ; Demmerle, Frederic ; Boehm, Gerhard ; Amann, Markus-Christian ; Alù, Andrea ; Belkin, Mikhail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/125</topic><topic>142/126</topic><topic>147/135</topic><topic>639/624/399/1015</topic><topic>639/624/400/2797</topic><topic>639/624/400/385</topic><topic>Asymmetry</topic><topic>Composite materials</topic><topic>Design</topic><topic>Electric properties</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Methods</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Quantum wells</topic><topic>Science</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Demmerle, Frederic</creatorcontrib><creatorcontrib>Boehm, Gerhard</creatorcontrib><creatorcontrib>Amann, Markus-Christian</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Belkin, Mikhail A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jongwon</au><au>Tymchenko, Mykhailo</au><au>Argyropoulos, Christos</au><au>Chen, Pai-Yen</au><au>Lu, Feng</au><au>Demmerle, Frederic</au><au>Boehm, Gerhard</au><au>Amann, Markus-Christian</au><au>Alù, Andrea</au><au>Belkin, Mikhail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>511</volume><issue>7507</issue><spage>65</spage><epage>69</epage><pages>65-69</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Multiple-quantum-well semiconductors can provide one of the largest known nonlinear material responses, which is, however, geometrically limited to light beams polarized perpendicular to the semiconductor layers; by coupling a plasmonic metasurface to the semiconductor heterostructure, this limitation can be lifted, opening a new path towards ultrathin planarized components with large nonlinear response. A new angle on nonlinear optics Multiple-quantum-well semiconductor heterostructures have been engineered to generate useful nonlinear optical responses that far exceed those of traditional nonlinear optical materials. But their range of applicability is geometrically limited as they require that the incident light be polarized perpendicular to the semiconductor layers. Jongwon Lee et al . now show that, by coupling a plasmonic metasurface to the semiconductor heterostructure, this geometrical limitation can be removed, thereby lifting the orientation restrictions on the use of these nonlinear optical elements. Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems—but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers 1 , 2 , 3 , 4 , 5 , 6 , 7 . In a different context, plasmonic metasurfaces (thin conductor–dielectric composite materials) have been proposed as a way of strongly enhancing light–matter interaction and realizing ultrathin planarized devices with exotic wave properties 8 , 9 , 10 , 11 . Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10 4 picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far 12 , 13 , 14 , 15 . The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24990746</pmid><doi>10.1038/nature13455</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2014-07, Vol.511 (7507), p.65-69
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1543281857
source Nature Journals Online
subjects 140/125
142/126
147/135
639/624/399/1015
639/624/400/2797
639/624/400/385
Asymmetry
Composite materials
Design
Electric properties
Humanities and Social Sciences
letter
Methods
Molecular beam epitaxy
multidisciplinary
Quantum wells
Science
Symmetry
title Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20nonlinear%20response%20from%20plasmonic%20metasurfaces%20coupled%20to%20intersubband%20transitions&rft.jtitle=Nature%20(London)&rft.au=Lee,%20Jongwon&rft.date=2014-07-03&rft.volume=511&rft.issue=7507&rft.spage=65&rft.epage=69&rft.pages=65-69&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13455&rft_dat=%3Cgale_proqu%3EA374101007%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c687t-33d181a2720394f2f255722abf875dfed679d98081d4cb2cb1cfd3e4023551e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1544527818&rft_id=info:pmid/24990746&rft_galeid=A374101007&rfr_iscdi=true