Loading…
A Numerical Study on the Ventilation Coefficients of Falling Hailstones
The ventilation coefficients that represent the enhancement of mass transfer rate due to the falling motion of spherical hailstones in an atmosphere of 460 hPa and 248 K are computed by numerically solving the unsteady Navier–Stokes equation for airflow past hailstones and the convective diffusion e...
Saved in:
Published in: | Journal of the atmospheric sciences 2014-07, Vol.71 (7), p.2625-2634 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ventilation coefficients that represent the enhancement of mass transfer rate due to the falling motion of spherical hailstones in an atmosphere of 460 hPa and 248 K are computed by numerically solving the unsteady Navier–Stokes equation for airflow past hailstones and the convective diffusion equation for water vapor diffusion around the falling hailstones. The diameters of the hailstones investigated are from 1 to 10 cm, corresponding to Reynolds number from 5935 to 177 148. The calculated ventilation coefficients vary approximately linearly with the hailstone diameter, from about 19 for a 1-cm hailstone to about 208 for a 10-cm hailstone. Empirical formulas for ventilation coefficient variation with hailstone diameter as well as Reynolds and Schmidt numbers are given. Implications of these ventilation coefficients are discussed. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-13-0229.1 |