Loading…
Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers
Investigating the kinetics of catalytic reactions with surface-enhanced Raman scattering (SERS) on a single particle remains a significant challenge. In this study, the single particle of the constructed hierarchical peony-like silver microflowers (SMFs) with highly roughened surface led to the coup...
Saved in:
Published in: | Nanoscale 2014-08, Vol.6 (15), p.8612-8616 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Investigating the kinetics of catalytic reactions with surface-enhanced Raman scattering (SERS) on a single particle remains a significant challenge. In this study, the single particle of the constructed hierarchical peony-like silver microflowers (SMFs) with highly roughened surface led to the coupling of high catalytic activity with a strong SERS effect, which acts as an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. The kinetics of the reaction of 4-nitrothiophenol (4-NTP) dimerizing into 4,4'-dimercaptoazobenzene (DMAB) was investigated and comparatively studied by using the SERS technique on a single particle of different morphologies of SMFs. The results indicate that a fully developed nanostructure of a hierarchical SMF has both larger SERS enhancement and apparent reaction rate constant k, which may be useful for monitoring and understanding the mechanism of plasmon-driven surface catalyzed reactions. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c4nr01939c |