Loading…
Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors
Precise measurements of a complete set of thermoelectric parameters on a single indium-arsenide nanowire (NW) have been performed using highly sensitive, micro-fabricated sensing devices based on the heater/sensor principle. The devices were fabricated as micro electro-mechanical systems consisting...
Saved in:
Published in: | Nanotechnology 2014-08, Vol.25 (30), p.305702-9 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precise measurements of a complete set of thermoelectric parameters on a single indium-arsenide nanowire (NW) have been performed using highly sensitive, micro-fabricated sensing devices based on the heater/sensor principle. The devices were fabricated as micro electro-mechanical systems consisting of silicon nitride membranes structured with resistive gold heaters/sensors. Preparation, operation and characterization of the devices are described in detail. Thermal decoupling of the heater/sensor platforms has been optimized reaching thermal conductances as low as with a measurements sensitivity below . The InAs NWs were characterized in terms of thermal conductance, four-probe electrical conductance and thermopower (Seebeck coefficient), all measured on a single NW. The temperature dependence of the parameters determining the thermoelectric figure-of-merit of an InAs NW was acquired in the range 200-350 K featuring a minor decrease of the thermal conductivity from 2.7 W to 2.3 W . |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/25/30/305702 |