Loading…
Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth
Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Us...
Saved in:
Published in: | The New phytologist 2014-08, Vol.203 (3), p.805-816 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 816 |
container_issue | 3 |
container_start_page | 805 |
container_title | The New phytologist |
container_volume | 203 |
creator | ašek, Vladimír Janda, Martin Delage, Elise Puyaubert, Juliette Guivarc'h, Anne López Maseda, Encarnación Dobrev, Petre I Caius, José Bóka, Károly Valentová, Olga Burketová, Lenka Zachowski, Alain Ruelland, Eric |
description | Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype. |
doi_str_mv | 10.1111/nph.12822 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1547520677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.203.3.805</jstor_id><sourcerecordid>newphytologist.203.3.805</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokNhwQuAJTZs0vra8U-W1ajQkSpAgkrsLCdxZjxk4uAfRvNafZA-E26ndIEl32vL37GO7kHoLZAzKOt8mjdnQBWlz9ACatFUCph8jhaEUFWJWvw8Qa9i3BJCGi7oS3RCa8kVV7BAfumnmFzKyf2xOJrRdYeyselcX0qXd3k0yfkJuwnPrv61Wq3ubuHuluKLYFrX-zm6iOfRTCnimPJ9Cz7alCxuc8KTT-Veyjr4fdq8Ri8GM0b75rGfoptPlz-WV9X118-r5cV1NTABtGItsJo3TU8lgcEIrhrojJEDYb0wSlhoJeG9VLxRrGYNtdQIMrRKEcJk27NT9PH47xz872xj0jsXOzsWn9bnqIGXEVAipCzoh__Qrc9hKu405SCkqIFAod49Urnd2V7Pwe1MOOh_oyzA-RHYu9Eent6B6PuMdMlIP2Skv3y7ejgURXVUbGPy4Ukx2f28OSQ_-rUrZihhmmlFeOHfH_nBeG3WwUV9850S4CVYUE0h_gJQnJ4t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516764101</pqid></control><display><type>article</type><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</creator><creatorcontrib>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</creatorcontrib><description>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12822</identifier><identifier>PMID: 24758581</identifier><language>eng</language><publisher>England: William Wesley and Son</publisher><subject><![CDATA[1-Phosphatidylinositol 4-Kinase - genetics ; 1-Phosphatidylinositol 4-Kinase - metabolism ; Arabidopsis ; Arabidopsis - anatomy & histology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biosynthesis ; Disease Resistance - genetics ; Disease Resistance - immunology ; DNA microarrays ; Down-Regulation - genetics ; dwarf phenotype ; gene expression ; Gene Expression Regulation, Plant ; Genes ; genetic markers ; Genetic mutation ; Genome, Plant ; Genotype ; Genotype & phenotype ; Growth ; hormone transduction ; Hormones ; Kinases ; Kinetics ; Leaves ; Lipid Metabolism - genetics ; microarray technology ; Models, Genetic ; Mutants ; Mutation ; Mutation - genetics ; Nucleotide sequence ; PCR ; Phenotype ; Phenotypes ; Phosphatidylinositol ; phosphatidylinositol‐4‐kinases (PI4Ks) ; Phospholipids ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant growth ; Plant growth regulators ; Plant growth substances ; Plant hormones ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Plant roots ; Plant Roots - anatomy & histology ; Plant Roots - growth & development ; Plant Shoots - growth & development ; Plants ; Polymerase chain reaction ; PR‐1 ; Pseudomonas - physiology ; Pseudomonas syringae ; Reactive Oxygen Species - metabolism ; resistance ; reverse transcriptase polymerase chain reaction ; Reverse transcription ; root growth ; Rosette ; Salicylic acid ; salicylic acid (SA) ; Salicylic Acid - metabolism ; Seedlings ; Signal Transduction ; Signaling ; Transcription ; Up-Regulation - genetics]]></subject><ispartof>The New phytologist, 2014-08, Vol.203 (3), p.805-816</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.203.3.805$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.203.3.805$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24758581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ašek, Vladimír</creatorcontrib><creatorcontrib>Janda, Martin</creatorcontrib><creatorcontrib>Delage, Elise</creatorcontrib><creatorcontrib>Puyaubert, Juliette</creatorcontrib><creatorcontrib>Guivarc'h, Anne</creatorcontrib><creatorcontrib>López Maseda, Encarnación</creatorcontrib><creatorcontrib>Dobrev, Petre I</creatorcontrib><creatorcontrib>Caius, José</creatorcontrib><creatorcontrib>Bóka, Károly</creatorcontrib><creatorcontrib>Valentová, Olga</creatorcontrib><creatorcontrib>Burketová, Lenka</creatorcontrib><creatorcontrib>Zachowski, Alain</creatorcontrib><creatorcontrib>Ruelland, Eric</creatorcontrib><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</description><subject>1-Phosphatidylinositol 4-Kinase - genetics</subject><subject>1-Phosphatidylinositol 4-Kinase - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - anatomy & histology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Disease Resistance - genetics</subject><subject>Disease Resistance - immunology</subject><subject>DNA microarrays</subject><subject>Down-Regulation - genetics</subject><subject>dwarf phenotype</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genetic markers</subject><subject>Genetic mutation</subject><subject>Genome, Plant</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Growth</subject><subject>hormone transduction</subject><subject>Hormones</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Leaves</subject><subject>Lipid Metabolism - genetics</subject><subject>microarray technology</subject><subject>Models, Genetic</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphatidylinositol</subject><subject>phosphatidylinositol‐4‐kinases (PI4Ks)</subject><subject>Phospholipids</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Plant growth regulators</subject><subject>Plant growth substances</subject><subject>Plant hormones</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>Plant roots</subject><subject>Plant Roots - anatomy & histology</subject><subject>Plant Roots - growth & development</subject><subject>Plant Shoots - growth & development</subject><subject>Plants</subject><subject>Polymerase chain reaction</subject><subject>PR‐1</subject><subject>Pseudomonas - physiology</subject><subject>Pseudomonas syringae</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>resistance</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>Reverse transcription</subject><subject>root growth</subject><subject>Rosette</subject><subject>Salicylic acid</subject><subject>salicylic acid (SA)</subject><subject>Salicylic Acid - metabolism</subject><subject>Seedlings</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Transcription</subject><subject>Up-Regulation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EokNhwQuAJTZs0vra8U-W1ajQkSpAgkrsLCdxZjxk4uAfRvNafZA-E26ndIEl32vL37GO7kHoLZAzKOt8mjdnQBWlz9ACatFUCph8jhaEUFWJWvw8Qa9i3BJCGi7oS3RCa8kVV7BAfumnmFzKyf2xOJrRdYeyselcX0qXd3k0yfkJuwnPrv61Wq3ubuHuluKLYFrX-zm6iOfRTCnimPJ9Cz7alCxuc8KTT-Veyjr4fdq8Ri8GM0b75rGfoptPlz-WV9X118-r5cV1NTABtGItsJo3TU8lgcEIrhrojJEDYb0wSlhoJeG9VLxRrGYNtdQIMrRKEcJk27NT9PH47xz872xj0jsXOzsWn9bnqIGXEVAipCzoh__Qrc9hKu405SCkqIFAod49Urnd2V7Pwe1MOOh_oyzA-RHYu9Eent6B6PuMdMlIP2Skv3y7ejgURXVUbGPy4Ukx2f28OSQ_-rUrZihhmmlFeOHfH_nBeG3WwUV9850S4CVYUE0h_gJQnJ4t</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>ašek, Vladimír</creator><creator>Janda, Martin</creator><creator>Delage, Elise</creator><creator>Puyaubert, Juliette</creator><creator>Guivarc'h, Anne</creator><creator>López Maseda, Encarnación</creator><creator>Dobrev, Petre I</creator><creator>Caius, José</creator><creator>Bóka, Károly</creator><creator>Valentová, Olga</creator><creator>Burketová, Lenka</creator><creator>Zachowski, Alain</creator><creator>Ruelland, Eric</creator><general>William Wesley and Son</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201408</creationdate><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><author>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1-Phosphatidylinositol 4-Kinase - genetics</topic><topic>1-Phosphatidylinositol 4-Kinase - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - anatomy & histology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Disease Resistance - genetics</topic><topic>Disease Resistance - immunology</topic><topic>DNA microarrays</topic><topic>Down-Regulation - genetics</topic><topic>dwarf phenotype</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genetic markers</topic><topic>Genetic mutation</topic><topic>Genome, Plant</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Growth</topic><topic>hormone transduction</topic><topic>Hormones</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Leaves</topic><topic>Lipid Metabolism - genetics</topic><topic>microarray technology</topic><topic>Models, Genetic</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphatidylinositol</topic><topic>phosphatidylinositol‐4‐kinases (PI4Ks)</topic><topic>Phospholipids</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Plant growth regulators</topic><topic>Plant growth substances</topic><topic>Plant hormones</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>Plant roots</topic><topic>Plant Roots - anatomy & histology</topic><topic>Plant Roots - growth & development</topic><topic>Plant Shoots - growth & development</topic><topic>Plants</topic><topic>Polymerase chain reaction</topic><topic>PR‐1</topic><topic>Pseudomonas - physiology</topic><topic>Pseudomonas syringae</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>resistance</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>Reverse transcription</topic><topic>root growth</topic><topic>Rosette</topic><topic>Salicylic acid</topic><topic>salicylic acid (SA)</topic><topic>Salicylic Acid - metabolism</topic><topic>Seedlings</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Transcription</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ašek, Vladimír</creatorcontrib><creatorcontrib>Janda, Martin</creatorcontrib><creatorcontrib>Delage, Elise</creatorcontrib><creatorcontrib>Puyaubert, Juliette</creatorcontrib><creatorcontrib>Guivarc'h, Anne</creatorcontrib><creatorcontrib>López Maseda, Encarnación</creatorcontrib><creatorcontrib>Dobrev, Petre I</creatorcontrib><creatorcontrib>Caius, José</creatorcontrib><creatorcontrib>Bóka, Károly</creatorcontrib><creatorcontrib>Valentová, Olga</creatorcontrib><creatorcontrib>Burketová, Lenka</creatorcontrib><creatorcontrib>Zachowski, Alain</creatorcontrib><creatorcontrib>Ruelland, Eric</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ašek, Vladimír</au><au>Janda, Martin</au><au>Delage, Elise</au><au>Puyaubert, Juliette</au><au>Guivarc'h, Anne</au><au>López Maseda, Encarnación</au><au>Dobrev, Petre I</au><au>Caius, José</au><au>Bóka, Károly</au><au>Valentová, Olga</au><au>Burketová, Lenka</au><au>Zachowski, Alain</au><au>Ruelland, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-08</date><risdate>2014</risdate><volume>203</volume><issue>3</issue><spage>805</spage><epage>816</epage><pages>805-816</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</abstract><cop>England</cop><pub>William Wesley and Son</pub><pmid>24758581</pmid><doi>10.1111/nph.12822</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2014-08, Vol.203 (3), p.805-816 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1547520677 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | 1-Phosphatidylinositol 4-Kinase - genetics 1-Phosphatidylinositol 4-Kinase - metabolism Arabidopsis Arabidopsis - anatomy & histology Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biosynthesis Disease Resistance - genetics Disease Resistance - immunology DNA microarrays Down-Regulation - genetics dwarf phenotype gene expression Gene Expression Regulation, Plant Genes genetic markers Genetic mutation Genome, Plant Genotype Genotype & phenotype Growth hormone transduction Hormones Kinases Kinetics Leaves Lipid Metabolism - genetics microarray technology Models, Genetic Mutants Mutation Mutation - genetics Nucleotide sequence PCR Phenotype Phenotypes Phosphatidylinositol phosphatidylinositol‐4‐kinases (PI4Ks) Phospholipids Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology Plant growth Plant growth regulators Plant growth substances Plant hormones Plant Leaves - genetics Plant Leaves - growth & development Plant roots Plant Roots - anatomy & histology Plant Roots - growth & development Plant Shoots - growth & development Plants Polymerase chain reaction PR‐1 Pseudomonas - physiology Pseudomonas syringae Reactive Oxygen Species - metabolism resistance reverse transcriptase polymerase chain reaction Reverse transcription root growth Rosette Salicylic acid salicylic acid (SA) Salicylic Acid - metabolism Seedlings Signal Transduction Signaling Transcription Up-Regulation - genetics |
title | Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20salicylic%20acid%20accumulation%20in%20pi4kIII%CE%B21%CE%B22%20Arabidopsis%20plants%20stunts%20rosette%20but%20not%20root%20growth&rft.jtitle=The%20New%20phytologist&rft.au=a%C5%A1ek,%20Vladim%C3%ADr&rft.date=2014-08&rft.volume=203&rft.issue=3&rft.spage=805&rft.epage=816&rft.pages=805-816&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12822&rft_dat=%3Cjstor_proqu%3Enewphytologist.203.3.805%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516764101&rft_id=info:pmid/24758581&rft_jstor_id=newphytologist.203.3.805&rfr_iscdi=true |