Loading…

Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth

Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Us...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2014-08, Vol.203 (3), p.805-816
Main Authors: ašek, Vladimír, Janda, Martin, Delage, Elise, Puyaubert, Juliette, Guivarc'h, Anne, López Maseda, Encarnación, Dobrev, Petre I, Caius, José, Bóka, Károly, Valentová, Olga, Burketová, Lenka, Zachowski, Alain, Ruelland, Eric
Format: Article
Language:English
Subjects:
PCR
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 816
container_issue 3
container_start_page 805
container_title The New phytologist
container_volume 203
creator ašek, Vladimír
Janda, Martin
Delage, Elise
Puyaubert, Juliette
Guivarc'h, Anne
López Maseda, Encarnación
Dobrev, Petre I
Caius, José
Bóka, Károly
Valentová, Olga
Burketová, Lenka
Zachowski, Alain
Ruelland, Eric
description Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.
doi_str_mv 10.1111/nph.12822
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1547520677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.203.3.805</jstor_id><sourcerecordid>newphytologist.203.3.805</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokNhwQuAJTZs0vra8U-W1ajQkSpAgkrsLCdxZjxk4uAfRvNafZA-E26ndIEl32vL37GO7kHoLZAzKOt8mjdnQBWlz9ACatFUCph8jhaEUFWJWvw8Qa9i3BJCGi7oS3RCa8kVV7BAfumnmFzKyf2xOJrRdYeyselcX0qXd3k0yfkJuwnPrv61Wq3ubuHuluKLYFrX-zm6iOfRTCnimPJ9Cz7alCxuc8KTT-Veyjr4fdq8Ri8GM0b75rGfoptPlz-WV9X118-r5cV1NTABtGItsJo3TU8lgcEIrhrojJEDYb0wSlhoJeG9VLxRrGYNtdQIMrRKEcJk27NT9PH47xz872xj0jsXOzsWn9bnqIGXEVAipCzoh__Qrc9hKu405SCkqIFAod49Urnd2V7Pwe1MOOh_oyzA-RHYu9Eent6B6PuMdMlIP2Skv3y7ejgURXVUbGPy4Ukx2f28OSQ_-rUrZihhmmlFeOHfH_nBeG3WwUV9850S4CVYUE0h_gJQnJ4t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516764101</pqid></control><display><type>article</type><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</creator><creatorcontrib>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</creatorcontrib><description>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12822</identifier><identifier>PMID: 24758581</identifier><language>eng</language><publisher>England: William Wesley and Son</publisher><subject><![CDATA[1-Phosphatidylinositol 4-Kinase - genetics ; 1-Phosphatidylinositol 4-Kinase - metabolism ; Arabidopsis ; Arabidopsis - anatomy & histology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biosynthesis ; Disease Resistance - genetics ; Disease Resistance - immunology ; DNA microarrays ; Down-Regulation - genetics ; dwarf phenotype ; gene expression ; Gene Expression Regulation, Plant ; Genes ; genetic markers ; Genetic mutation ; Genome, Plant ; Genotype ; Genotype & phenotype ; Growth ; hormone transduction ; Hormones ; Kinases ; Kinetics ; Leaves ; Lipid Metabolism - genetics ; microarray technology ; Models, Genetic ; Mutants ; Mutation ; Mutation - genetics ; Nucleotide sequence ; PCR ; Phenotype ; Phenotypes ; Phosphatidylinositol ; phosphatidylinositol‐4‐kinases (PI4Ks) ; Phospholipids ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant growth ; Plant growth regulators ; Plant growth substances ; Plant hormones ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Plant roots ; Plant Roots - anatomy & histology ; Plant Roots - growth & development ; Plant Shoots - growth & development ; Plants ; Polymerase chain reaction ; PR‐1 ; Pseudomonas - physiology ; Pseudomonas syringae ; Reactive Oxygen Species - metabolism ; resistance ; reverse transcriptase polymerase chain reaction ; Reverse transcription ; root growth ; Rosette ; Salicylic acid ; salicylic acid (SA) ; Salicylic Acid - metabolism ; Seedlings ; Signal Transduction ; Signaling ; Transcription ; Up-Regulation - genetics]]></subject><ispartof>The New phytologist, 2014-08, Vol.203 (3), p.805-816</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.203.3.805$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.203.3.805$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24758581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ašek, Vladimír</creatorcontrib><creatorcontrib>Janda, Martin</creatorcontrib><creatorcontrib>Delage, Elise</creatorcontrib><creatorcontrib>Puyaubert, Juliette</creatorcontrib><creatorcontrib>Guivarc'h, Anne</creatorcontrib><creatorcontrib>López Maseda, Encarnación</creatorcontrib><creatorcontrib>Dobrev, Petre I</creatorcontrib><creatorcontrib>Caius, José</creatorcontrib><creatorcontrib>Bóka, Károly</creatorcontrib><creatorcontrib>Valentová, Olga</creatorcontrib><creatorcontrib>Burketová, Lenka</creatorcontrib><creatorcontrib>Zachowski, Alain</creatorcontrib><creatorcontrib>Ruelland, Eric</creatorcontrib><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</description><subject>1-Phosphatidylinositol 4-Kinase - genetics</subject><subject>1-Phosphatidylinositol 4-Kinase - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - anatomy &amp; histology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Disease Resistance - genetics</subject><subject>Disease Resistance - immunology</subject><subject>DNA microarrays</subject><subject>Down-Regulation - genetics</subject><subject>dwarf phenotype</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genetic markers</subject><subject>Genetic mutation</subject><subject>Genome, Plant</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Growth</subject><subject>hormone transduction</subject><subject>Hormones</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Leaves</subject><subject>Lipid Metabolism - genetics</subject><subject>microarray technology</subject><subject>Models, Genetic</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphatidylinositol</subject><subject>phosphatidylinositol‐4‐kinases (PI4Ks)</subject><subject>Phospholipids</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Plant growth regulators</subject><subject>Plant growth substances</subject><subject>Plant hormones</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant roots</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Shoots - growth &amp; development</subject><subject>Plants</subject><subject>Polymerase chain reaction</subject><subject>PR‐1</subject><subject>Pseudomonas - physiology</subject><subject>Pseudomonas syringae</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>resistance</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>Reverse transcription</subject><subject>root growth</subject><subject>Rosette</subject><subject>Salicylic acid</subject><subject>salicylic acid (SA)</subject><subject>Salicylic Acid - metabolism</subject><subject>Seedlings</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Transcription</subject><subject>Up-Regulation - genetics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EokNhwQuAJTZs0vra8U-W1ajQkSpAgkrsLCdxZjxk4uAfRvNafZA-E26ndIEl32vL37GO7kHoLZAzKOt8mjdnQBWlz9ACatFUCph8jhaEUFWJWvw8Qa9i3BJCGi7oS3RCa8kVV7BAfumnmFzKyf2xOJrRdYeyselcX0qXd3k0yfkJuwnPrv61Wq3ubuHuluKLYFrX-zm6iOfRTCnimPJ9Cz7alCxuc8KTT-Veyjr4fdq8Ri8GM0b75rGfoptPlz-WV9X118-r5cV1NTABtGItsJo3TU8lgcEIrhrojJEDYb0wSlhoJeG9VLxRrGYNtdQIMrRKEcJk27NT9PH47xz872xj0jsXOzsWn9bnqIGXEVAipCzoh__Qrc9hKu405SCkqIFAod49Urnd2V7Pwe1MOOh_oyzA-RHYu9Eent6B6PuMdMlIP2Skv3y7ejgURXVUbGPy4Ukx2f28OSQ_-rUrZihhmmlFeOHfH_nBeG3WwUV9850S4CVYUE0h_gJQnJ4t</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>ašek, Vladimír</creator><creator>Janda, Martin</creator><creator>Delage, Elise</creator><creator>Puyaubert, Juliette</creator><creator>Guivarc'h, Anne</creator><creator>López Maseda, Encarnación</creator><creator>Dobrev, Petre I</creator><creator>Caius, José</creator><creator>Bóka, Károly</creator><creator>Valentová, Olga</creator><creator>Burketová, Lenka</creator><creator>Zachowski, Alain</creator><creator>Ruelland, Eric</creator><general>William Wesley and Son</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201408</creationdate><title>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</title><author>ašek, Vladimír ; Janda, Martin ; Delage, Elise ; Puyaubert, Juliette ; Guivarc'h, Anne ; López Maseda, Encarnación ; Dobrev, Petre I ; Caius, José ; Bóka, Károly ; Valentová, Olga ; Burketová, Lenka ; Zachowski, Alain ; Ruelland, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1-Phosphatidylinositol 4-Kinase - genetics</topic><topic>1-Phosphatidylinositol 4-Kinase - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - anatomy &amp; histology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Disease Resistance - genetics</topic><topic>Disease Resistance - immunology</topic><topic>DNA microarrays</topic><topic>Down-Regulation - genetics</topic><topic>dwarf phenotype</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genetic markers</topic><topic>Genetic mutation</topic><topic>Genome, Plant</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Growth</topic><topic>hormone transduction</topic><topic>Hormones</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Leaves</topic><topic>Lipid Metabolism - genetics</topic><topic>microarray technology</topic><topic>Models, Genetic</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphatidylinositol</topic><topic>phosphatidylinositol‐4‐kinases (PI4Ks)</topic><topic>Phospholipids</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Plant growth regulators</topic><topic>Plant growth substances</topic><topic>Plant hormones</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant roots</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Shoots - growth &amp; development</topic><topic>Plants</topic><topic>Polymerase chain reaction</topic><topic>PR‐1</topic><topic>Pseudomonas - physiology</topic><topic>Pseudomonas syringae</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>resistance</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>Reverse transcription</topic><topic>root growth</topic><topic>Rosette</topic><topic>Salicylic acid</topic><topic>salicylic acid (SA)</topic><topic>Salicylic Acid - metabolism</topic><topic>Seedlings</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Transcription</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ašek, Vladimír</creatorcontrib><creatorcontrib>Janda, Martin</creatorcontrib><creatorcontrib>Delage, Elise</creatorcontrib><creatorcontrib>Puyaubert, Juliette</creatorcontrib><creatorcontrib>Guivarc'h, Anne</creatorcontrib><creatorcontrib>López Maseda, Encarnación</creatorcontrib><creatorcontrib>Dobrev, Petre I</creatorcontrib><creatorcontrib>Caius, José</creatorcontrib><creatorcontrib>Bóka, Károly</creatorcontrib><creatorcontrib>Valentová, Olga</creatorcontrib><creatorcontrib>Burketová, Lenka</creatorcontrib><creatorcontrib>Zachowski, Alain</creatorcontrib><creatorcontrib>Ruelland, Eric</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ašek, Vladimír</au><au>Janda, Martin</au><au>Delage, Elise</au><au>Puyaubert, Juliette</au><au>Guivarc'h, Anne</au><au>López Maseda, Encarnación</au><au>Dobrev, Petre I</au><au>Caius, José</au><au>Bóka, Károly</au><au>Valentová, Olga</au><au>Burketová, Lenka</au><au>Zachowski, Alain</au><au>Ruelland, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-08</date><risdate>2014</risdate><volume>203</volume><issue>3</issue><spage>805</spage><epage>816</epage><pages>805-816</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol‐4‐kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) and multiple phytohormone analysis by LC‐MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR‐1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild‐type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.</abstract><cop>England</cop><pub>William Wesley and Son</pub><pmid>24758581</pmid><doi>10.1111/nph.12822</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2014-08, Vol.203 (3), p.805-816
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1547520677
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects 1-Phosphatidylinositol 4-Kinase - genetics
1-Phosphatidylinositol 4-Kinase - metabolism
Arabidopsis
Arabidopsis - anatomy & histology
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biosynthesis
Disease Resistance - genetics
Disease Resistance - immunology
DNA microarrays
Down-Regulation - genetics
dwarf phenotype
gene expression
Gene Expression Regulation, Plant
Genes
genetic markers
Genetic mutation
Genome, Plant
Genotype
Genotype & phenotype
Growth
hormone transduction
Hormones
Kinases
Kinetics
Leaves
Lipid Metabolism - genetics
microarray technology
Models, Genetic
Mutants
Mutation
Mutation - genetics
Nucleotide sequence
PCR
Phenotype
Phenotypes
Phosphatidylinositol
phosphatidylinositol‐4‐kinases (PI4Ks)
Phospholipids
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant growth
Plant growth regulators
Plant growth substances
Plant hormones
Plant Leaves - genetics
Plant Leaves - growth & development
Plant roots
Plant Roots - anatomy & histology
Plant Roots - growth & development
Plant Shoots - growth & development
Plants
Polymerase chain reaction
PR‐1
Pseudomonas - physiology
Pseudomonas syringae
Reactive Oxygen Species - metabolism
resistance
reverse transcriptase polymerase chain reaction
Reverse transcription
root growth
Rosette
Salicylic acid
salicylic acid (SA)
Salicylic Acid - metabolism
Seedlings
Signal Transduction
Signaling
Transcription
Up-Regulation - genetics
title Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20salicylic%20acid%20accumulation%20in%20pi4kIII%CE%B21%CE%B22%20Arabidopsis%20plants%20stunts%20rosette%20but%20not%20root%20growth&rft.jtitle=The%20New%20phytologist&rft.au=a%C5%A1ek,%20Vladim%C3%ADr&rft.date=2014-08&rft.volume=203&rft.issue=3&rft.spage=805&rft.epage=816&rft.pages=805-816&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12822&rft_dat=%3Cjstor_proqu%3Enewphytologist.203.3.805%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f3612-3b134599d2701fa65891caa7f03d6a86e1b705d7859834392e2a60fb880037bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516764101&rft_id=info:pmid/24758581&rft_jstor_id=newphytologist.203.3.805&rfr_iscdi=true