Loading…

Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995-2009 and implications for storm forecasting

We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996–2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that ex...

Full description

Saved in:
Bibliographic Details
Published in:Space weather 2011-07, Vol.9 (7), p.np-n/a
Main Authors: Richardson, I. G., Cane, H. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996–2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA “G” storm scale, based on maximum values of the southward magnetic field component (Bs), the solar wind speed (V), and the y component (Ey) of the solar wind convective electric field E = −V × B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with Bs or Ey ≈ VBs in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event‐to‐event correlation is weaker than for Bs and Ey. Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all‐sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our “comprehensive” ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor. Key Points Summarize geomagnetic response of >300 ICMEs in cycle 23 Relate response to parameters of ICMEs including Bs, Ey, Vsw Use Vsw results to estimate likely geoeffectiveness of an ICME observed remotely
ISSN:1542-7390
1542-7390
DOI:10.1029/2011SW000670