Loading…
Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)
Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific micro...
Saved in:
Published in: | Molecular ecology 2014-07, Vol.23 (14), p.3469-3482 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3482 |
container_issue | 14 |
container_start_page | 3469 |
container_title | Molecular ecology |
container_volume | 23 |
creator | Windisch, H. S Frickenhaus, S John, U Knust, R Pörtner, H.‐O Lucassen, M |
description | Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long‐term shifts in gene expression after 2 months of acclimation to six temperatures between −1 and 9 °C. Changes in cellular processes comprised signalling, post‐translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up‐regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome‐based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat‐shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm‐induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature‐specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale. |
doi_str_mv | 10.1111/mec.12822 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1547850787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547850787</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4442-b13ad2d6aa9aaee46b891b8a88c6ac181c941428c84bde692759bd8c714c81da3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhwB8AS1zKIa0_E5tbFbUFVD7EUsHNmjhO1yVf2I7KHvjvJLulB07MYTwaP6-l8TsIPafkmM5x0jl7TJli7AFaUZ7LjGnx_SFaEZ2zjBLFD9CTGG8IoZxJ-RgdMKF0oZlcod_rFFyMeE7j0EeHh4Ar17vGWw8tTq4bXYA0BYfB2tZ3kPzQv8EpQB9t8GMaOm9x9Nf9jorY9_i0TxBsmvuNjxt89BnsZmshAK7CrnTjBtqpe_0UPWqgje7Z3XmIrs7PvpZvs8tPF-_K08usEUKwrKIcalbnABrAOZFXStNKgVI2B0sVtVpQwZRVoqpdrlkhdVUrW1BhFa2BH6Kj_btjGH5OLibT-Whd20LvhikaKkWhJClU8V-opJpIMaOv_kFvhin08yALxTklnC7UiztqqjpXmzHMnxi25q8HM3CyB25967b395SYxVwzm2t25poPZ-WumBXZXuFjcr_uFRB-mLzghTTfPl6YNXsvv5SsNMtML_d8A4OB6-CjuVozQsWyEUITzv8A_tqwEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543310314</pqid></control><display><type>article</type><title>Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Windisch, H. S ; Frickenhaus, S ; John, U ; Knust, R ; Pörtner, H.‐O ; Lucassen, M</creator><creatorcontrib>Windisch, H. S ; Frickenhaus, S ; John, U ; Knust, R ; Pörtner, H.‐O ; Lucassen, M</creatorcontrib><description>Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long‐term shifts in gene expression after 2 months of acclimation to six temperatures between −1 and 9 °C. Changes in cellular processes comprised signalling, post‐translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up‐regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome‐based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat‐shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm‐induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature‐specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12822</identifier><identifier>PMID: 24897925</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>acclimation ; Acclimatization - genetics ; animal performance ; Animals ; Antarctic Regions ; cDNA library ; chronic thermal exposure ; climate change ; cold ; cold adaptation ; cytoskeleton ; energy ; ESTs ; Female ; Fish ; gene expression ; gene expression regulation ; gene regulation ; Heat-Shock Proteins - metabolism ; inflammation ; Inflammation - metabolism ; Liver - metabolism ; Male ; Marine biology ; microarray ; microarray technology ; Ocean temperature ; Oxidative Stress ; Pachycara brachycephalum ; Perciformes - genetics ; Perciformes - growth & development ; Protein Biosynthesis ; protein degradation ; proteins ; Proteolysis ; Signal Transduction ; stress response ; Temperature ; Transcription factors ; Transcriptome ; transcriptomics ; translation (genetics) ; Up-Regulation ; weight loss</subject><ispartof>Molecular ecology, 2014-07, Vol.23 (14), p.3469-3482</ispartof><rights>2014 John Wiley & Sons Ltd</rights><rights>2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24897925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Windisch, H. S</creatorcontrib><creatorcontrib>Frickenhaus, S</creatorcontrib><creatorcontrib>John, U</creatorcontrib><creatorcontrib>Knust, R</creatorcontrib><creatorcontrib>Pörtner, H.‐O</creatorcontrib><creatorcontrib>Lucassen, M</creatorcontrib><title>Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long‐term shifts in gene expression after 2 months of acclimation to six temperatures between −1 and 9 °C. Changes in cellular processes comprised signalling, post‐translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up‐regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome‐based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat‐shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm‐induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature‐specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale.</description><subject>acclimation</subject><subject>Acclimatization - genetics</subject><subject>animal performance</subject><subject>Animals</subject><subject>Antarctic Regions</subject><subject>cDNA library</subject><subject>chronic thermal exposure</subject><subject>climate change</subject><subject>cold</subject><subject>cold adaptation</subject><subject>cytoskeleton</subject><subject>energy</subject><subject>ESTs</subject><subject>Female</subject><subject>Fish</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>gene regulation</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>inflammation</subject><subject>Inflammation - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Marine biology</subject><subject>microarray</subject><subject>microarray technology</subject><subject>Ocean temperature</subject><subject>Oxidative Stress</subject><subject>Pachycara brachycephalum</subject><subject>Perciformes - genetics</subject><subject>Perciformes - growth & development</subject><subject>Protein Biosynthesis</subject><subject>protein degradation</subject><subject>proteins</subject><subject>Proteolysis</subject><subject>Signal Transduction</subject><subject>stress response</subject><subject>Temperature</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>translation (genetics)</subject><subject>Up-Regulation</subject><subject>weight loss</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EokvhwB8AS1zKIa0_E5tbFbUFVD7EUsHNmjhO1yVf2I7KHvjvJLulB07MYTwaP6-l8TsIPafkmM5x0jl7TJli7AFaUZ7LjGnx_SFaEZ2zjBLFD9CTGG8IoZxJ-RgdMKF0oZlcod_rFFyMeE7j0EeHh4Ar17vGWw8tTq4bXYA0BYfB2tZ3kPzQv8EpQB9t8GMaOm9x9Nf9jorY9_i0TxBsmvuNjxt89BnsZmshAK7CrnTjBtqpe_0UPWqgje7Z3XmIrs7PvpZvs8tPF-_K08usEUKwrKIcalbnABrAOZFXStNKgVI2B0sVtVpQwZRVoqpdrlkhdVUrW1BhFa2BH6Kj_btjGH5OLibT-Whd20LvhikaKkWhJClU8V-opJpIMaOv_kFvhin08yALxTklnC7UiztqqjpXmzHMnxi25q8HM3CyB25967b395SYxVwzm2t25poPZ-WumBXZXuFjcr_uFRB-mLzghTTfPl6YNXsvv5SsNMtML_d8A4OB6-CjuVozQsWyEUITzv8A_tqwEg</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Windisch, H. S</creator><creator>Frickenhaus, S</creator><creator>John, U</creator><creator>Knust, R</creator><creator>Pörtner, H.‐O</creator><creator>Lucassen, M</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201407</creationdate><title>Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)</title><author>Windisch, H. S ; Frickenhaus, S ; John, U ; Knust, R ; Pörtner, H.‐O ; Lucassen, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4442-b13ad2d6aa9aaee46b891b8a88c6ac181c941428c84bde692759bd8c714c81da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acclimation</topic><topic>Acclimatization - genetics</topic><topic>animal performance</topic><topic>Animals</topic><topic>Antarctic Regions</topic><topic>cDNA library</topic><topic>chronic thermal exposure</topic><topic>climate change</topic><topic>cold</topic><topic>cold adaptation</topic><topic>cytoskeleton</topic><topic>energy</topic><topic>ESTs</topic><topic>Female</topic><topic>Fish</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>gene regulation</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>inflammation</topic><topic>Inflammation - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Marine biology</topic><topic>microarray</topic><topic>microarray technology</topic><topic>Ocean temperature</topic><topic>Oxidative Stress</topic><topic>Pachycara brachycephalum</topic><topic>Perciformes - genetics</topic><topic>Perciformes - growth & development</topic><topic>Protein Biosynthesis</topic><topic>protein degradation</topic><topic>proteins</topic><topic>Proteolysis</topic><topic>Signal Transduction</topic><topic>stress response</topic><topic>Temperature</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>translation (genetics)</topic><topic>Up-Regulation</topic><topic>weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Windisch, H. S</creatorcontrib><creatorcontrib>Frickenhaus, S</creatorcontrib><creatorcontrib>John, U</creatorcontrib><creatorcontrib>Knust, R</creatorcontrib><creatorcontrib>Pörtner, H.‐O</creatorcontrib><creatorcontrib>Lucassen, M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Windisch, H. S</au><au>Frickenhaus, S</au><au>John, U</au><au>Knust, R</au><au>Pörtner, H.‐O</au><au>Lucassen, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2014-07</date><risdate>2014</risdate><volume>23</volume><issue>14</issue><spage>3469</spage><epage>3482</epage><pages>3469-3482</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long‐term shifts in gene expression after 2 months of acclimation to six temperatures between −1 and 9 °C. Changes in cellular processes comprised signalling, post‐translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up‐regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome‐based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat‐shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm‐induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature‐specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>24897925</pmid><doi>10.1111/mec.12822</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2014-07, Vol.23 (14), p.3469-3482 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1547850787 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | acclimation Acclimatization - genetics animal performance Animals Antarctic Regions cDNA library chronic thermal exposure climate change cold cold adaptation cytoskeleton energy ESTs Female Fish gene expression gene expression regulation gene regulation Heat-Shock Proteins - metabolism inflammation Inflammation - metabolism Liver - metabolism Male Marine biology microarray microarray technology Ocean temperature Oxidative Stress Pachycara brachycephalum Perciformes - genetics Perciformes - growth & development Protein Biosynthesis protein degradation proteins Proteolysis Signal Transduction stress response Temperature Transcription factors Transcriptome transcriptomics translation (genetics) Up-Regulation weight loss |
title | Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20response%20or%20beneficial%20temperature%20acclimation:%20transcriptomic%20signatures%20in%20Antarctic%20fish%20(Pachycara%20brachycephalum)&rft.jtitle=Molecular%20ecology&rft.au=Windisch,%20H.%20S&rft.date=2014-07&rft.volume=23&rft.issue=14&rft.spage=3469&rft.epage=3482&rft.pages=3469-3482&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12822&rft_dat=%3Cproquest_pubme%3E1547850787%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f4442-b13ad2d6aa9aaee46b891b8a88c6ac181c941428c84bde692759bd8c714c81da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543310314&rft_id=info:pmid/24897925&rfr_iscdi=true |