Loading…

Nanoparticle dispersion in superfluid helium

Cryogenic fluid flows including liquid nitrogen and superfluid helium are a rich environment for novel scientific discovery. Flows can be measured optically and dynamically when faithful tracer particles are dispersed in the liquid. We present a reliable technique for dispersing commercially availab...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2014-07, Vol.85 (7), p.073705-073705
Main Authors: Meichle, David P, Lathrop, Daniel P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3
cites cdi_FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3
container_end_page 073705
container_issue 7
container_start_page 073705
container_title Review of scientific instruments
container_volume 85
creator Meichle, David P
Lathrop, Daniel P
description Cryogenic fluid flows including liquid nitrogen and superfluid helium are a rich environment for novel scientific discovery. Flows can be measured optically and dynamically when faithful tracer particles are dispersed in the liquid. We present a reliable technique for dispersing commercially available fluorescent nanoparticles into cryogenic fluids using ultrasound. Five types of fluorescent nanoparticles ranging in size from 5 nm to 1 μm were imaged in liquid nitrogen and superfluid helium, and were tracked at frame rates up to 100 Hz.
doi_str_mv 10.1063/1.4886811
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551019927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551019927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlYP_gFZ8KLg1plsNpscS_ELil70HNIkiyn7ZdI9-O9NafXgXIaBh_cdHkIuEeYIvLjHOROCC8QjMkUQMq84LY7JFKBgOa-YmJCzGDeQpkQ8JRNagiiRsSm5e9VdP-iw9aZxmfVxcCH6vst8l8UxHXUzept9usaP7Tk5qXUT3cVhz8jH48P78jlfvT29LBer3DBk21ynejScGgvSGqgY5aWUvKpLaSoJNdeCIV87kzioqawEFRKs0yALbYUtZuRmnzuE_mt0cataH41rGt25fowKyxIBpaRVQq__oZt-DF36TlHc9SKTkKjbPWVCH2NwtRqCb3X4Vghqp1ChOihM7NUhcVy3zv6Rv86KH0WTaFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126591490</pqid></control><display><type>article</type><title>Nanoparticle dispersion in superfluid helium</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Meichle, David P ; Lathrop, Daniel P</creator><creatorcontrib>Meichle, David P ; Lathrop, Daniel P</creatorcontrib><description>Cryogenic fluid flows including liquid nitrogen and superfluid helium are a rich environment for novel scientific discovery. Flows can be measured optically and dynamically when faithful tracer particles are dispersed in the liquid. We present a reliable technique for dispersing commercially available fluorescent nanoparticles into cryogenic fluids using ultrasound. Five types of fluorescent nanoparticles ranging in size from 5 nm to 1 μm were imaged in liquid nitrogen and superfluid helium, and were tracked at frame rates up to 100 Hz.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4886811</identifier><identifier>PMID: 25085144</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cryogenic fluids ; Fluorescence ; Helium ; Liquid nitrogen ; Nanoparticles ; Scientific apparatus &amp; instruments ; Superfluidity ; Tracer particles</subject><ispartof>Review of scientific instruments, 2014-07, Vol.85 (7), p.073705-073705</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3</citedby><cites>FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25085144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meichle, David P</creatorcontrib><creatorcontrib>Lathrop, Daniel P</creatorcontrib><title>Nanoparticle dispersion in superfluid helium</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Cryogenic fluid flows including liquid nitrogen and superfluid helium are a rich environment for novel scientific discovery. Flows can be measured optically and dynamically when faithful tracer particles are dispersed in the liquid. We present a reliable technique for dispersing commercially available fluorescent nanoparticles into cryogenic fluids using ultrasound. Five types of fluorescent nanoparticles ranging in size from 5 nm to 1 μm were imaged in liquid nitrogen and superfluid helium, and were tracked at frame rates up to 100 Hz.</description><subject>Cryogenic fluids</subject><subject>Fluorescence</subject><subject>Helium</subject><subject>Liquid nitrogen</subject><subject>Nanoparticles</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Superfluidity</subject><subject>Tracer particles</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlYP_gFZ8KLg1plsNpscS_ELil70HNIkiyn7ZdI9-O9NafXgXIaBh_cdHkIuEeYIvLjHOROCC8QjMkUQMq84LY7JFKBgOa-YmJCzGDeQpkQ8JRNagiiRsSm5e9VdP-iw9aZxmfVxcCH6vst8l8UxHXUzept9usaP7Tk5qXUT3cVhz8jH48P78jlfvT29LBer3DBk21ynejScGgvSGqgY5aWUvKpLaSoJNdeCIV87kzioqawEFRKs0yALbYUtZuRmnzuE_mt0cataH41rGt25fowKyxIBpaRVQq__oZt-DF36TlHc9SKTkKjbPWVCH2NwtRqCb3X4Vghqp1ChOihM7NUhcVy3zv6Rv86KH0WTaFI</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Meichle, David P</creator><creator>Lathrop, Daniel P</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140701</creationdate><title>Nanoparticle dispersion in superfluid helium</title><author>Meichle, David P ; Lathrop, Daniel P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cryogenic fluids</topic><topic>Fluorescence</topic><topic>Helium</topic><topic>Liquid nitrogen</topic><topic>Nanoparticles</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Superfluidity</topic><topic>Tracer particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meichle, David P</creatorcontrib><creatorcontrib>Lathrop, Daniel P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meichle, David P</au><au>Lathrop, Daniel P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle dispersion in superfluid helium</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>85</volume><issue>7</issue><spage>073705</spage><epage>073705</epage><pages>073705-073705</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>Cryogenic fluid flows including liquid nitrogen and superfluid helium are a rich environment for novel scientific discovery. Flows can be measured optically and dynamically when faithful tracer particles are dispersed in the liquid. We present a reliable technique for dispersing commercially available fluorescent nanoparticles into cryogenic fluids using ultrasound. Five types of fluorescent nanoparticles ranging in size from 5 nm to 1 μm were imaged in liquid nitrogen and superfluid helium, and were tracked at frame rates up to 100 Hz.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25085144</pmid><doi>10.1063/1.4886811</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2014-07, Vol.85 (7), p.073705-073705
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_1551019927
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Cryogenic fluids
Fluorescence
Helium
Liquid nitrogen
Nanoparticles
Scientific apparatus & instruments
Superfluidity
Tracer particles
title Nanoparticle dispersion in superfluid helium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20dispersion%20in%20superfluid%20helium&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Meichle,%20David%20P&rft.date=2014-07-01&rft.volume=85&rft.issue=7&rft.spage=073705&rft.epage=073705&rft.pages=073705-073705&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4886811&rft_dat=%3Cproquest_cross%3E1551019927%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-a7621c62cd09dc0742659967f59c790f6a8416bec7620f29782890dea093ad8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126591490&rft_id=info:pmid/25085144&rfr_iscdi=true