Loading…

Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant

•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtain...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2014-06, Vol.236, p.10-18
Main Authors: Tu, Jianjun, He, Hanlin, Xiong, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473
cites cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473
container_end_page 18
container_issue
container_start_page 10
container_title Applied mathematics and computation
container_volume 236
creator Tu, Jianjun
He, Hanlin
Xiong, Ping
description •A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy. The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.
doi_str_mv 10.1016/j.amc.2014.03.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551039723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314003658</els_id><sourcerecordid>1551039723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFadaPiNM08SVN4gJHFKWuy7KPpDQZ0_bryTTOnGzZz2vJD2O3HDIOvLxfZnqDWQ58koHIgOdnbMTrSqRFOZHnbAQgy1QAiEt25f0SAKqST0bsc9rqPpgfShqNKx-o7439Svze4mJw1hx0MM4mDYUdkU1woV0wGPcR3fhkZ8Ii2dqVdTubzE3vcWHCIUFnfdA2XLOLTq893fzVMft4enyfvaTzt-fX2XSeohAQ0rxriAuqZaW7WjYtClkQr-uKRNd1uqEWUJS8wLyJk9gSl8Ab3UrsZD2pxJjdne72g_vekg9qYzzSeq0tua1XvCg4CFnlIqL8hOLgvB-oU_1gNnrYKw7qqFItVVSpjioVCBVVxszDKUPxhx9Dg_JoyCK1ZiAMqnXmn_Qv1IN_bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551039723</pqid></control><display><type>article</type><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</creator><creatorcontrib>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</creatorcontrib><description>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy. The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.03.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive ; Backstepping ; Chaos synchronization ; Chaos theory ; Control systems ; Error analysis ; Estimators ; Lipschitz constant ; Mathematical analysis ; Nonlinearity ; Synchronism ; Synchronization ; Uncertainty</subject><ispartof>Applied mathematics and computation, 2014-06, Vol.236, p.10-18</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</citedby><cites>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</cites><orcidid>0000-0003-0310-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314003658$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27922,27923,45970,46001</link.rule.ids></links><search><creatorcontrib>Tu, Jianjun</creatorcontrib><creatorcontrib>He, Hanlin</creatorcontrib><creatorcontrib>Xiong, Ping</creatorcontrib><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><title>Applied mathematics and computation</title><description>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy. The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</description><subject>Adaptive</subject><subject>Backstepping</subject><subject>Chaos synchronization</subject><subject>Chaos theory</subject><subject>Control systems</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Lipschitz constant</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Uncertainty</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFadaPiNM08SVN4gJHFKWuy7KPpDQZ0_bryTTOnGzZz2vJD2O3HDIOvLxfZnqDWQ58koHIgOdnbMTrSqRFOZHnbAQgy1QAiEt25f0SAKqST0bsc9rqPpgfShqNKx-o7439Svze4mJw1hx0MM4mDYUdkU1woV0wGPcR3fhkZ8Ii2dqVdTubzE3vcWHCIUFnfdA2XLOLTq893fzVMft4enyfvaTzt-fX2XSeohAQ0rxriAuqZaW7WjYtClkQr-uKRNd1uqEWUJS8wLyJk9gSl8Ab3UrsZD2pxJjdne72g_vekg9qYzzSeq0tua1XvCg4CFnlIqL8hOLgvB-oU_1gNnrYKw7qqFItVVSpjioVCBVVxszDKUPxhx9Dg_JoyCK1ZiAMqnXmn_Qv1IN_bg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Tu, Jianjun</creator><creator>He, Hanlin</creator><creator>Xiong, Ping</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0310-5417</orcidid></search><sort><creationdate>20140601</creationdate><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><author>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive</topic><topic>Backstepping</topic><topic>Chaos synchronization</topic><topic>Chaos theory</topic><topic>Control systems</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Lipschitz constant</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Jianjun</creatorcontrib><creatorcontrib>He, Hanlin</creatorcontrib><creatorcontrib>Xiong, Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Jianjun</au><au>He, Hanlin</au><au>Xiong, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>236</volume><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy. The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.03.012</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0310-5417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-06, Vol.236, p.10-18
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1551039723
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Adaptive
Backstepping
Chaos synchronization
Chaos theory
Control systems
Error analysis
Estimators
Lipschitz constant
Mathematical analysis
Nonlinearity
Synchronism
Synchronization
Uncertainty
title Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20backstepping%20synchronization%20between%20chaotic%20systems%20with%20unknown%20Lipschitz%20constant&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Tu,%20Jianjun&rft.date=2014-06-01&rft.volume=236&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.03.012&rft_dat=%3Cproquest_cross%3E1551039723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551039723&rft_id=info:pmid/&rfr_iscdi=true