Loading…
Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant
•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtain...
Saved in:
Published in: | Applied mathematics and computation 2014-06, Vol.236, p.10-18 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473 |
container_end_page | 18 |
container_issue | |
container_start_page | 10 |
container_title | Applied mathematics and computation |
container_volume | 236 |
creator | Tu, Jianjun He, Hanlin Xiong, Ping |
description | •A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy.
The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect. |
doi_str_mv | 10.1016/j.amc.2014.03.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551039723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314003658</els_id><sourcerecordid>1551039723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFadaPiNM08SVN4gJHFKWuy7KPpDQZ0_bryTTOnGzZz2vJD2O3HDIOvLxfZnqDWQ58koHIgOdnbMTrSqRFOZHnbAQgy1QAiEt25f0SAKqST0bsc9rqPpgfShqNKx-o7439Svze4mJw1hx0MM4mDYUdkU1woV0wGPcR3fhkZ8Ii2dqVdTubzE3vcWHCIUFnfdA2XLOLTq893fzVMft4enyfvaTzt-fX2XSeohAQ0rxriAuqZaW7WjYtClkQr-uKRNd1uqEWUJS8wLyJk9gSl8Ab3UrsZD2pxJjdne72g_vekg9qYzzSeq0tua1XvCg4CFnlIqL8hOLgvB-oU_1gNnrYKw7qqFItVVSpjioVCBVVxszDKUPxhx9Dg_JoyCK1ZiAMqnXmn_Qv1IN_bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551039723</pqid></control><display><type>article</type><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</creator><creatorcontrib>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</creatorcontrib><description>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy.
The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.03.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive ; Backstepping ; Chaos synchronization ; Chaos theory ; Control systems ; Error analysis ; Estimators ; Lipschitz constant ; Mathematical analysis ; Nonlinearity ; Synchronism ; Synchronization ; Uncertainty</subject><ispartof>Applied mathematics and computation, 2014-06, Vol.236, p.10-18</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</citedby><cites>FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</cites><orcidid>0000-0003-0310-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314003658$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27922,27923,45970,46001</link.rule.ids></links><search><creatorcontrib>Tu, Jianjun</creatorcontrib><creatorcontrib>He, Hanlin</creatorcontrib><creatorcontrib>Xiong, Ping</creatorcontrib><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><title>Applied mathematics and computation</title><description>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy.
The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</description><subject>Adaptive</subject><subject>Backstepping</subject><subject>Chaos synchronization</subject><subject>Chaos theory</subject><subject>Control systems</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Lipschitz constant</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Uncertainty</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXFadaPiNM08SVN4gJHFKWuy7KPpDQZ0_bryTTOnGzZz2vJD2O3HDIOvLxfZnqDWQ58koHIgOdnbMTrSqRFOZHnbAQgy1QAiEt25f0SAKqST0bsc9rqPpgfShqNKx-o7439Svze4mJw1hx0MM4mDYUdkU1woV0wGPcR3fhkZ8Ii2dqVdTubzE3vcWHCIUFnfdA2XLOLTq893fzVMft4enyfvaTzt-fX2XSeohAQ0rxriAuqZaW7WjYtClkQr-uKRNd1uqEWUJS8wLyJk9gSl8Ab3UrsZD2pxJjdne72g_vekg9qYzzSeq0tua1XvCg4CFnlIqL8hOLgvB-oU_1gNnrYKw7qqFItVVSpjioVCBVVxszDKUPxhx9Dg_JoyCK1ZiAMqnXmn_Qv1IN_bg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Tu, Jianjun</creator><creator>He, Hanlin</creator><creator>Xiong, Ping</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0310-5417</orcidid></search><sort><creationdate>20140601</creationdate><title>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</title><author>Tu, Jianjun ; He, Hanlin ; Xiong, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive</topic><topic>Backstepping</topic><topic>Chaos synchronization</topic><topic>Chaos theory</topic><topic>Control systems</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Lipschitz constant</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Jianjun</creatorcontrib><creatorcontrib>He, Hanlin</creatorcontrib><creatorcontrib>Xiong, Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Jianjun</au><au>He, Hanlin</au><au>Xiong, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>236</volume><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>•A method of synchronous control between two nonlinear systems with unknown Lipschitz constants of nonlinear terms is given.•A broad applicable method suitable for many nonlinear systems is presented via self adaptive design for unknown parameters.•Low-dimension, even scalar controller can be obtained by this method owing to the backstepping design philosophy.
The error between two nonlinear terms is a key point of many synchronization problems, however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the stability analysis of the controlled error system, thus the nonlinear systems with unknown parameters and unknown Lipschitz constant is considered in this paper. Their scalar synchronous controller is proposed based on the thought of backstepping design. Without the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solving skill, two different estimators are used on the same unknown parameter. Finally, the synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems and chaotic Genesio systems with unknown parameters are given as examples to verify the control effect.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.03.012</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0310-5417</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-06, Vol.236, p.10-18 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551039723 |
source | Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Adaptive Backstepping Chaos synchronization Chaos theory Control systems Error analysis Estimators Lipschitz constant Mathematical analysis Nonlinearity Synchronism Synchronization Uncertainty |
title | Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20backstepping%20synchronization%20between%20chaotic%20systems%20with%20unknown%20Lipschitz%20constant&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Tu,%20Jianjun&rft.date=2014-06-01&rft.volume=236&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.03.012&rft_dat=%3Cproquest_cross%3E1551039723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-2fbe13e897af89bdc395e1887e3fffabed0c3615c2be3fc36e1901bad9cf98473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551039723&rft_id=info:pmid/&rfr_iscdi=true |