Loading…
Incorporation of lithium and nitrogen into CVD diamond thin films
High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised la...
Saved in:
Published in: | Diamond and related materials 2014-04, Vol.44, p.1-7 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | Diamond and related materials |
container_volume | 44 |
creator | Othman, M. Zamir May, Paul W. Fox, Neil A. Heard, Peter J. |
description | High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species.
•High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond. |
doi_str_mv | 10.1016/j.diamond.2014.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551041117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963514000223</els_id><sourcerecordid>1551041117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QchGcDNjns3MSkp9FQpu1G1I89CUmaQmU8F_b4YObt3cu_nOPfccAK4wqjHC89ttbbzqYzA1QZjViNQI4SMww41oK4Tm5BjMUEt41c4pPwVnOW8LQFqGZ2CxCjqmXUxq8DHA6GDnh0-_76EKBgY_pPhhA_RhiHD5fg8nJ1iYAJ3v-nwBTpzqsr2c9jl4e3x4XT5X65en1XKxrjQVZKiIYKxh5Q1SBtfc6cZhvuGuRczwDTMto1RtuKHKIYEockazRmxaxfj4Kj0HN4e7uxS_9jYPsvdZ265TwcZ9lphzjBjGWBSUH1CdYs7JOrlLvlfpR2Ikx8rkVk5B5FiZRESWRoruerJQWavOJRW0z39i0lAhaDNydwfOlrzf3iaZtbdBW-OT1YM00f_j9AtIpYKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551041117</pqid></control><display><type>article</type><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</creator><creatorcontrib>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</creatorcontrib><description>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species.
•High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2014.02.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; CVD diamond ; Deposition ; Diamonds ; Diffusion ; Diffusion rate ; Diffusion; interface formation ; Doped films ; Doping ; Electrical resistivity ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Lithium ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; n-Type doping ; Nitrogen ; Physics ; Solid surfaces and solid-solid interfaces ; Specific materials ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films</subject><ispartof>Diamond and related materials, 2014-04, Vol.44, p.1-7</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</citedby><cites>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28377381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Othman, M. Zamir</creatorcontrib><creatorcontrib>May, Paul W.</creatorcontrib><creatorcontrib>Fox, Neil A.</creatorcontrib><creatorcontrib>Heard, Peter J.</creatorcontrib><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><title>Diamond and related materials</title><description>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species.
•High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</description><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD diamond</subject><subject>Deposition</subject><subject>Diamonds</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Diffusion; interface formation</subject><subject>Doped films</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>n-Type doping</subject><subject>Nitrogen</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Specific materials</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_QchGcDNjns3MSkp9FQpu1G1I89CUmaQmU8F_b4YObt3cu_nOPfccAK4wqjHC89ttbbzqYzA1QZjViNQI4SMww41oK4Tm5BjMUEt41c4pPwVnOW8LQFqGZ2CxCjqmXUxq8DHA6GDnh0-_76EKBgY_pPhhA_RhiHD5fg8nJ1iYAJ3v-nwBTpzqsr2c9jl4e3x4XT5X65en1XKxrjQVZKiIYKxh5Q1SBtfc6cZhvuGuRczwDTMto1RtuKHKIYEockazRmxaxfj4Kj0HN4e7uxS_9jYPsvdZ265TwcZ9lphzjBjGWBSUH1CdYs7JOrlLvlfpR2Ikx8rkVk5B5FiZRESWRoruerJQWavOJRW0z39i0lAhaDNydwfOlrzf3iaZtbdBW-OT1YM00f_j9AtIpYKZ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Othman, M. Zamir</creator><creator>May, Paul W.</creator><creator>Fox, Neil A.</creator><creator>Heard, Peter J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><author>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD diamond</topic><topic>Deposition</topic><topic>Diamonds</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Diffusion; interface formation</topic><topic>Doped films</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>n-Type doping</topic><topic>Nitrogen</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Specific materials</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Othman, M. Zamir</creatorcontrib><creatorcontrib>May, Paul W.</creatorcontrib><creatorcontrib>Fox, Neil A.</creatorcontrib><creatorcontrib>Heard, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Othman, M. Zamir</au><au>May, Paul W.</au><au>Fox, Neil A.</au><au>Heard, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of lithium and nitrogen into CVD diamond thin films</atitle><jtitle>Diamond and related materials</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>44</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species.
•High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2014.02.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2014-04, Vol.44, p.1-7 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551041117 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology CVD diamond Deposition Diamonds Diffusion Diffusion rate Diffusion interface formation Doped films Doping Electrical resistivity Exact sciences and technology Fullerenes and related materials diamonds, graphite Lithium Materials science Methods of deposition of films and coatings film growth and epitaxy n-Type doping Nitrogen Physics Solid surfaces and solid-solid interfaces Specific materials Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Thin films |
title | Incorporation of lithium and nitrogen into CVD diamond thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20lithium%20and%20nitrogen%20into%20CVD%20diamond%20thin%20films&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Othman,%20M.%20Zamir&rft.date=2014-04-01&rft.volume=44&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2014.02.001&rft_dat=%3Cproquest_cross%3E1551041117%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551041117&rft_id=info:pmid/&rfr_iscdi=true |