Loading…

Incorporation of lithium and nitrogen into CVD diamond thin films

High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised la...

Full description

Saved in:
Bibliographic Details
Published in:Diamond and related materials 2014-04, Vol.44, p.1-7
Main Authors: Othman, M. Zamir, May, Paul W., Fox, Neil A., Heard, Peter J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413
cites cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413
container_end_page 7
container_issue
container_start_page 1
container_title Diamond and related materials
container_volume 44
creator Othman, M. Zamir
May, Paul W.
Fox, Neil A.
Heard, Peter J.
description High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species. •High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.
doi_str_mv 10.1016/j.diamond.2014.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551041117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963514000223</els_id><sourcerecordid>1551041117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QchGcDNjns3MSkp9FQpu1G1I89CUmaQmU8F_b4YObt3cu_nOPfccAK4wqjHC89ttbbzqYzA1QZjViNQI4SMww41oK4Tm5BjMUEt41c4pPwVnOW8LQFqGZ2CxCjqmXUxq8DHA6GDnh0-_76EKBgY_pPhhA_RhiHD5fg8nJ1iYAJ3v-nwBTpzqsr2c9jl4e3x4XT5X65en1XKxrjQVZKiIYKxh5Q1SBtfc6cZhvuGuRczwDTMto1RtuKHKIYEockazRmxaxfj4Kj0HN4e7uxS_9jYPsvdZ265TwcZ9lphzjBjGWBSUH1CdYs7JOrlLvlfpR2Ikx8rkVk5B5FiZRESWRoruerJQWavOJRW0z39i0lAhaDNydwfOlrzf3iaZtbdBW-OT1YM00f_j9AtIpYKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551041117</pqid></control><display><type>article</type><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</creator><creatorcontrib>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</creatorcontrib><description>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species. •High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2014.02.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; CVD diamond ; Deposition ; Diamonds ; Diffusion ; Diffusion rate ; Diffusion; interface formation ; Doped films ; Doping ; Electrical resistivity ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Lithium ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; n-Type doping ; Nitrogen ; Physics ; Solid surfaces and solid-solid interfaces ; Specific materials ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films</subject><ispartof>Diamond and related materials, 2014-04, Vol.44, p.1-7</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</citedby><cites>FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28377381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Othman, M. Zamir</creatorcontrib><creatorcontrib>May, Paul W.</creatorcontrib><creatorcontrib>Fox, Neil A.</creatorcontrib><creatorcontrib>Heard, Peter J.</creatorcontrib><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><title>Diamond and related materials</title><description>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species. •High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</description><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD diamond</subject><subject>Deposition</subject><subject>Diamonds</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Diffusion; interface formation</subject><subject>Doped films</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>n-Type doping</subject><subject>Nitrogen</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Specific materials</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_QchGcDNjns3MSkp9FQpu1G1I89CUmaQmU8F_b4YObt3cu_nOPfccAK4wqjHC89ttbbzqYzA1QZjViNQI4SMww41oK4Tm5BjMUEt41c4pPwVnOW8LQFqGZ2CxCjqmXUxq8DHA6GDnh0-_76EKBgY_pPhhA_RhiHD5fg8nJ1iYAJ3v-nwBTpzqsr2c9jl4e3x4XT5X65en1XKxrjQVZKiIYKxh5Q1SBtfc6cZhvuGuRczwDTMto1RtuKHKIYEockazRmxaxfj4Kj0HN4e7uxS_9jYPsvdZ265TwcZ9lphzjBjGWBSUH1CdYs7JOrlLvlfpR2Ikx8rkVk5B5FiZRESWRoruerJQWavOJRW0z39i0lAhaDNydwfOlrzf3iaZtbdBW-OT1YM00f_j9AtIpYKZ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Othman, M. Zamir</creator><creator>May, Paul W.</creator><creator>Fox, Neil A.</creator><creator>Heard, Peter J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Incorporation of lithium and nitrogen into CVD diamond thin films</title><author>Othman, M. Zamir ; May, Paul W. ; Fox, Neil A. ; Heard, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD diamond</topic><topic>Deposition</topic><topic>Diamonds</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Diffusion; interface formation</topic><topic>Doped films</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>n-Type doping</topic><topic>Nitrogen</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Specific materials</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Othman, M. Zamir</creatorcontrib><creatorcontrib>May, Paul W.</creatorcontrib><creatorcontrib>Fox, Neil A.</creatorcontrib><creatorcontrib>Heard, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Othman, M. Zamir</au><au>May, Paul W.</au><au>Fox, Neil A.</au><au>Heard, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of lithium and nitrogen into CVD diamond thin films</atitle><jtitle>Diamond and related materials</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>44</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>High concentrations of lithium (~5×1019cm−3) and nitrogen (~3×1020cm−3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ±200nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species. •High concentrations of Li and N were simultaneously incorporated in CVD diamond films.•This was done using Li3N and NH3 as the sources of Li and N, respectively.•Sequential deposition created well-defined localised layers of Li:N-doped diamond.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2014.02.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2014-04, Vol.44, p.1-7
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_1551041117
source ScienceDirect Freedom Collection 2022-2024
subjects Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
CVD diamond
Deposition
Diamonds
Diffusion
Diffusion rate
Diffusion
interface formation
Doped films
Doping
Electrical resistivity
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Lithium
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
n-Type doping
Nitrogen
Physics
Solid surfaces and solid-solid interfaces
Specific materials
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films
title Incorporation of lithium and nitrogen into CVD diamond thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20lithium%20and%20nitrogen%20into%20CVD%20diamond%20thin%20films&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Othman,%20M.%20Zamir&rft.date=2014-04-01&rft.volume=44&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2014.02.001&rft_dat=%3Cproquest_cross%3E1551041117%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-27448409224095c5fc8f15b5f904d5b4d9433ab5d3af07030fdc487b9a4529413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551041117&rft_id=info:pmid/&rfr_iscdi=true