Loading…
Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection
Based on two mutually coupled vertical-cavity surface-emitting lasers (MC-VCSELs) subject to a bandwidth-enhanced chaotic signal injection, a bidirectional dual-channel broadband chaos communication system is proposed and investigated numerically. The results show that, adopting a bandwidth-enhanced...
Saved in:
Published in: | Nonlinear dynamics 2014-04, Vol.76 (1), p.399-407 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on two mutually coupled vertical-cavity surface-emitting lasers (MC-VCSELs) subject to a bandwidth-enhanced chaotic signal injection, a bidirectional dual-channel broadband chaos communication system is proposed and investigated numerically. The results show that, adopting a bandwidth-enhanced chaotic signal (about 33 GHz) from a driving VCSEL (D-VCSEL) to drive two MC-VCSELs, high-quality isochronal chaos synchronization with over 30 GHz bandwidth between two corresponding LP modes in the two MC-VCSELs can be obtained under proper driving injection, and this synchronization has high tolerance to mismatched intrinsic parameters and frequency detuning. Moreover, based on the broadband chaos synchronization of two corresponding LP modes, the bidirectional dual-channel high-speed chaos communication can be realized and the communication performances have also been preliminarily examined under chaos masking (CMS) encryption scheme. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-013-1134-y |