Loading…
Design of rare-earth-ion doped chalcogenide photonic crystals for enhancing the fluorescence emission
Rare-earth-ion doped chalcogenide glass is a promising material for developing mid-infrared light sources. In this work, Tm3+-doped chalcogenide glass was prepared and photonic crystal structures were designed to enhance its fluorescence emission at approximately 3.8μm. By employing the finite-diffe...
Saved in:
Published in: | Optics communications 2014-07, Vol.322, p.123-128 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rare-earth-ion doped chalcogenide glass is a promising material for developing mid-infrared light sources. In this work, Tm3+-doped chalcogenide glass was prepared and photonic crystal structures were designed to enhance its fluorescence emission at approximately 3.8μm. By employing the finite-difference time-domain (FDTD) simulation, the emission characteristics of the luminescent centers in the bulk material and in the photonic crystals were worked out. Utilizing analysis of the photon excitation inside the sample and the photon extraction on the sample surface, it was found that fluorescence emission can be significantly enhanced 260-fold with the designed photonic crystal structure. The results of this work can be used to realize high-efficiency mid-infrared light sources. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2014.01.079 |