Loading…
On a nonlinear wave equation with boundary damping
This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is co...
Saved in:
Published in: | Mathematical methods in the applied sciences 2014-06, Vol.37 (9), p.1278-1302 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103 |
---|---|
cites | cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103 |
container_end_page | 1302 |
container_issue | 9 |
container_start_page | 1278 |
container_title | Mathematical methods in the applied sciences |
container_volume | 37 |
creator | Lourêdo, Aldo T. Ferreira de Araújo, M.A. Milla Miranda, M. |
description | This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation
u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞)
with boundary conditions
u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞).
Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 > 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants.
Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.2885 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551046338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3307374171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxV8BECbtykzv2yLMVWobVSFZfDJJ3q1GTSziTWvr0pFUXB1dl85-ecH4BzBHsIQnxVlqaHpWQHoIOgUimigh-CDkQCphQjegxOYlxCCCVCuAPw1Ccm8ZUvnLcmJBvzbhO7bkztKp9sXP2aZFXj5yZsk7kpV86_nIKjhSmiPfuaXfA0vH4c3KTj6eh20B-nOeGUpQtOkREyl4rxzCAl53LBlMlNRg22uRCZgApJarlkmAliISWWEiIFZVYgSLrgcp-7CtW6sbHWpYu5LQrjbdVEjRhDkPJ2o6UXf-iyaoJvr2sVZhJBrMhPYB6qGINd6FVwZfuZRlDvytNteXpXXkvTPd24wm7_dXoy6f_2Ltb249ub8Ka5IILp57uRnqmH4f1oxvWMfAI7w3xU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525810293</pqid></control><display><type>article</type><title>On a nonlinear wave equation with boundary damping</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</creator><creatorcontrib>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</creatorcontrib><description>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation
u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞)
with boundary conditions
u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞).
Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 > 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants.
Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.2885</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Approximation ; Boundaries ; boundary stabilization ; Decay ; Functions (mathematics) ; Galerkin method ; Galerkin methods ; Mathematical analysis ; Nonlinearity ; special basis ; Wave equations</subject><ispartof>Mathematical methods in the applied sciences, 2014-06, Vol.37 (9), p.1278-1302</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</citedby><cites>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lourêdo, Aldo T.</creatorcontrib><creatorcontrib>Ferreira de Araújo, M.A.</creatorcontrib><creatorcontrib>Milla Miranda, M.</creatorcontrib><title>On a nonlinear wave equation with boundary damping</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation
u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞)
with boundary conditions
u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞).
Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 > 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants.
Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>boundary stabilization</subject><subject>Decay</subject><subject>Functions (mathematics)</subject><subject>Galerkin method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>special basis</subject><subject>Wave equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxV8BECbtykzv2yLMVWobVSFZfDJJ3q1GTSziTWvr0pFUXB1dl85-ecH4BzBHsIQnxVlqaHpWQHoIOgUimigh-CDkQCphQjegxOYlxCCCVCuAPw1Ccm8ZUvnLcmJBvzbhO7bkztKp9sXP2aZFXj5yZsk7kpV86_nIKjhSmiPfuaXfA0vH4c3KTj6eh20B-nOeGUpQtOkREyl4rxzCAl53LBlMlNRg22uRCZgApJarlkmAliISWWEiIFZVYgSLrgcp-7CtW6sbHWpYu5LQrjbdVEjRhDkPJ2o6UXf-iyaoJvr2sVZhJBrMhPYB6qGINd6FVwZfuZRlDvytNteXpXXkvTPd24wm7_dXoy6f_2Ltb249ub8Ka5IILp57uRnqmH4f1oxvWMfAI7w3xU</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Lourêdo, Aldo T.</creator><creator>Ferreira de Araújo, M.A.</creator><creator>Milla Miranda, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201406</creationdate><title>On a nonlinear wave equation with boundary damping</title><author>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>boundary stabilization</topic><topic>Decay</topic><topic>Functions (mathematics)</topic><topic>Galerkin method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>special basis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourêdo, Aldo T.</creatorcontrib><creatorcontrib>Ferreira de Araújo, M.A.</creatorcontrib><creatorcontrib>Milla Miranda, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourêdo, Aldo T.</au><au>Ferreira de Araújo, M.A.</au><au>Milla Miranda, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a nonlinear wave equation with boundary damping</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2014-06</date><risdate>2014</risdate><volume>37</volume><issue>9</issue><spage>1278</spage><epage>1302</epage><pages>1278-1302</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation
u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞)
with boundary conditions
u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞).
Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 > 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants.
Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.2885</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2014-06, Vol.37 (9), p.1278-1302 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551046338 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Approximation Boundaries boundary stabilization Decay Functions (mathematics) Galerkin method Galerkin methods Mathematical analysis Nonlinearity special basis Wave equations |
title | On a nonlinear wave equation with boundary damping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20nonlinear%20wave%20equation%20with%20boundary%20damping&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lour%C3%AAdo,%20Aldo%20T.&rft.date=2014-06&rft.volume=37&rft.issue=9&rft.spage=1278&rft.epage=1302&rft.pages=1278-1302&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.2885&rft_dat=%3Cproquest_cross%3E3307374171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525810293&rft_id=info:pmid/&rfr_iscdi=true |