Loading…

On a nonlinear wave equation with boundary damping

This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is co...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2014-06, Vol.37 (9), p.1278-1302
Main Authors: Lourêdo, Aldo T., Ferreira de Araújo, M.A., Milla Miranda, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103
cites cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103
container_end_page 1302
container_issue 9
container_start_page 1278
container_title Mathematical methods in the applied sciences
container_volume 37
creator Lourêdo, Aldo T.
Ferreira de Araújo, M.A.
Milla Miranda, M.
description This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 > 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants. Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.2885
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551046338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3307374171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxV8BECbtykzv2yLMVWobVSFZfDJJ3q1GTSziTWvr0pFUXB1dl85-ecH4BzBHsIQnxVlqaHpWQHoIOgUimigh-CDkQCphQjegxOYlxCCCVCuAPw1Ccm8ZUvnLcmJBvzbhO7bkztKp9sXP2aZFXj5yZsk7kpV86_nIKjhSmiPfuaXfA0vH4c3KTj6eh20B-nOeGUpQtOkREyl4rxzCAl53LBlMlNRg22uRCZgApJarlkmAliISWWEiIFZVYgSLrgcp-7CtW6sbHWpYu5LQrjbdVEjRhDkPJ2o6UXf-iyaoJvr2sVZhJBrMhPYB6qGINd6FVwZfuZRlDvytNteXpXXkvTPd24wm7_dXoy6f_2Ltb249ub8Ka5IILp57uRnqmH4f1oxvWMfAI7w3xU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525810293</pqid></control><display><type>article</type><title>On a nonlinear wave equation with boundary damping</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</creator><creatorcontrib>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</creatorcontrib><description>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 &gt; 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants. Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.2885</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Approximation ; Boundaries ; boundary stabilization ; Decay ; Functions (mathematics) ; Galerkin method ; Galerkin methods ; Mathematical analysis ; Nonlinearity ; special basis ; Wave equations</subject><ispartof>Mathematical methods in the applied sciences, 2014-06, Vol.37 (9), p.1278-1302</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</citedby><cites>FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lourêdo, Aldo T.</creatorcontrib><creatorcontrib>Ferreira de Araújo, M.A.</creatorcontrib><creatorcontrib>Milla Miranda, M.</creatorcontrib><title>On a nonlinear wave equation with boundary damping</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 &gt; 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants. Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>boundary stabilization</subject><subject>Decay</subject><subject>Functions (mathematics)</subject><subject>Galerkin method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>special basis</subject><subject>Wave equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxV8BECbtykzv2yLMVWobVSFZfDJJ3q1GTSziTWvr0pFUXB1dl85-ecH4BzBHsIQnxVlqaHpWQHoIOgUimigh-CDkQCphQjegxOYlxCCCVCuAPw1Ccm8ZUvnLcmJBvzbhO7bkztKp9sXP2aZFXj5yZsk7kpV86_nIKjhSmiPfuaXfA0vH4c3KTj6eh20B-nOeGUpQtOkREyl4rxzCAl53LBlMlNRg22uRCZgApJarlkmAliISWWEiIFZVYgSLrgcp-7CtW6sbHWpYu5LQrjbdVEjRhDkPJ2o6UXf-iyaoJvr2sVZhJBrMhPYB6qGINd6FVwZfuZRlDvytNteXpXXkvTPd24wm7_dXoy6f_2Ltb249ub8Ka5IILp57uRnqmH4f1oxvWMfAI7w3xU</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Lourêdo, Aldo T.</creator><creator>Ferreira de Araújo, M.A.</creator><creator>Milla Miranda, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201406</creationdate><title>On a nonlinear wave equation with boundary damping</title><author>Lourêdo, Aldo T. ; Ferreira de Araújo, M.A. ; Milla Miranda, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>boundary stabilization</topic><topic>Decay</topic><topic>Functions (mathematics)</topic><topic>Galerkin method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>special basis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourêdo, Aldo T.</creatorcontrib><creatorcontrib>Ferreira de Araújo, M.A.</creatorcontrib><creatorcontrib>Milla Miranda, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourêdo, Aldo T.</au><au>Ferreira de Araújo, M.A.</au><au>Milla Miranda, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a nonlinear wave equation with boundary damping</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2014-06</date><risdate>2014</risdate><volume>37</volume><issue>9</issue><spage>1278</spage><epage>1302</epage><pages>1278-1302</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>This paper is concerned with the existence and decay of solutions of the mixed problem for the nonlinear wave equation u′′−μ△u+αf∫Ωu2dxu+βg∫Ωu′2dxu′=0inΩ×(0,∞) with boundary conditions u=0onΓ0×(0,∞)and∂u∂ν+h(.,u′)=0onΓ1×(0,∞). Here, Ω is an open bounded set of Rn with boundary Γ of class C2; Γ is constituted of two disjoint closed parts Γ0 and Γ1 both with positive measure; the functions μ(t), f(s), g(s) satisfy the conditions μ(t) ≥ μ0 &gt; 0, f(s) ≥ 0, g(s) ≥ 0 for t ≥ 0, s ≥ 0 and h(x,s) is a real function where x ∈ Γ1, s∈R; ν(x) is the unit outward normal vector at x ∈ Γ1 and α, β are non‐negative real constants. Assuming that h(x,s) is strongly monotone in s for each x ∈ Γ1, it is proved the global existence of solutions for the previous mixed problem. For that, it is used in the Galerkin method with a special basis, the compactness approach, the Strauss approximation for real functions and the trace theorem for nonsmooth functions. The exponential decay of the energy is derived by two methods: by using a Lyapunov functional and by Nakao's method. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.2885</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2014-06, Vol.37 (9), p.1278-1302
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1551046338
source Wiley-Blackwell Read & Publish Collection
subjects Approximation
Boundaries
boundary stabilization
Decay
Functions (mathematics)
Galerkin method
Galerkin methods
Mathematical analysis
Nonlinearity
special basis
Wave equations
title On a nonlinear wave equation with boundary damping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20nonlinear%20wave%20equation%20with%20boundary%20damping&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lour%C3%AAdo,%20Aldo%20T.&rft.date=2014-06&rft.volume=37&rft.issue=9&rft.spage=1278&rft.epage=1302&rft.pages=1278-1302&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.2885&rft_dat=%3Cproquest_cross%3E3307374171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3645-f641a78c8956ba198d8f59acab4a2ec77b709184e6852573e043e4338745e7103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525810293&rft_id=info:pmid/&rfr_iscdi=true