Loading…

Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies

We investigate the exciton energy transfer (ET) in nanoassemblies (nanotube based aggregates) formed by polymer wrapped single-walled carbon nanotubes (SWNTs) using photoluminescence (PL) spectroscopy and simulation. The distinctive feature of this study is the gradual growth of such nanostructures...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2014-06, Vol.16 (22), p.10914-10922
Main Authors: Karachevtsev, Victor A, Plokhotnichenko, Alexander M, Glamazda, Alexander Yu, Leontiev, Victor S, Levitsky, Igor A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the exciton energy transfer (ET) in nanoassemblies (nanotube based aggregates) formed by polymer wrapped single-walled carbon nanotubes (SWNTs) using photoluminescence (PL) spectroscopy and simulation. The distinctive feature of this study is the gradual growth of such nanostructures in aqueous medium induced by increasing the concentration of porphyrin molecules stitching nanotube-polymer complexes in densely packed assemblies. Experimental dependencies of PL intensity on the porphyrin concentration for different types of semiconducting SWNTs demonstrate step-like behavior controlled by the amount of bound nanotubes and are in good agreement with the simulating model. The simulation algorithm determines the criterion of the aggregate formation depending on the number of porphyrin molecules per tube and the cascade exciton energy transfer between neighboring semiconducting nanotubes of different chiralities. Aggregates of small sizes (up to six-eight individual tubes) contain mostly semiconducting species, while aggregates of a larger size (up to several tens of tubes) incorporate metallic SWNTs, inducing strong PL quenching. From the fitting procedure, an ET rate of 0.6 × 10(10) s(-1) has been determined which is consistent with the center to center distance (∼2.3 nm) between adjacent tubes separated by polymer and porphyrin molecules. The threshold of the dimer formation corresponds to one porphyrin molecule per ∼20 nm of tube lengths that was supported by molecular dynamics simulation. These findings provide insight into the ET mechanism in SWNT nanoassemblies of variable sizes, which can be gradually controlled by the external factor (the concentration of porphyrin molecules).
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp00776j